В этой задаче нужно использовать теорему об отношении площадей подобных треугольников: Если нужно, докажите, что эти два треугольника - подобные (их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого) .
S/s1 = k^2, где k - коэффициент подобия.
По условию, площадь одного треугольника в два раза больше площади второго:
S = 2s1
S/s1 = 2, S/s1 = k^2
k = √2
Отношение оснований треугольнико равно коэффициенту подобия:
ОСН/осн = k
Найдём ОСН = осн*k = 18*√2
ответ: Основание треугольника равно 18*√2 или ≈ 25,46 см.
1) Рисуем пирамиду. В основании квадрат. Вершина М. Проекция вершины точка О- точка пересечения диагоналей квадрата. Тогда проекции отрезков АМ,ВМ,СМ и ДМ равны, как половинки равных диагоналей АО=ОВ=ОС=ОД. Значит и отрезки АМ,ВМ,СМ,ДМ равны. Точка М равноудалена от вершин квадрата Из прямоугольного треугольника АМО по теореме Пифагора МО²=АМ²-АО² ответ МО=8
2) векторы перпендикулярны если их скалярное произведение равно нулю. Векторы заданы координатами. Скалярное произведение равно сумме произведений попарных координат n·5+2·(-2)+0,5·(-2)=0 5n-4-1=0 5n=5 n=1
3) Боковая поверхность правильной четырехугольной пирамиды состоит из площадей четырех треугольников. В основании пирамиды лежит квадрат, обозначим его сторону х м, периметр квадрата по условию равен 1 м, значит 4х=1, х=0,25 м Площадь треугольника равна половине произведения основания на высоту (апофему) Таких треугольников 4 Итак, боковая поверхность равна 4· 1/2· 0,25 ·0,25 (кв. м)=0,125 кв м
Если нужно, докажите, что эти два треугольника - подобные (их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого) .
S/s1 = k^2, где k - коэффициент подобия.
По условию, площадь одного треугольника в два раза больше площади второго:
S = 2s1
S/s1 = 2, S/s1 = k^2
k = √2
Отношение оснований треугольнико равно коэффициенту подобия:
ОСН/осн = k
Найдём ОСН = осн*k = 18*√2
ответ: Основание треугольника равно 18*√2 или ≈ 25,46 см.
Из прямоугольного треугольника АМО по теореме Пифагора МО²=АМ²-АО²
ответ МО=8
2) векторы перпендикулярны если их скалярное произведение равно нулю. Векторы заданы координатами. Скалярное произведение равно сумме произведений попарных координат
n·5+2·(-2)+0,5·(-2)=0
5n-4-1=0
5n=5
n=1
3) Боковая поверхность правильной четырехугольной пирамиды состоит из площадей четырех треугольников. В основании пирамиды лежит квадрат, обозначим его сторону х м, периметр квадрата по условию равен 1 м, значит 4х=1, х=0,25 м
Площадь треугольника равна половине произведения основания на высоту (апофему)
Таких треугольников 4
Итак, боковая поверхность равна 4· 1/2· 0,25 ·0,25 (кв. м)=0,125 кв м