1) Проведем другую диагональ АС. Точку пересечения диагоналей обозначим О. ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса. ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС. ΔАВО=ΔСВО , значит АВ=ВС=2,7 см. Периметр равен 2(2,7+2,9)=2·5,6=11,2 см. 2) Обозначим длину сторон: х; х-8: х+8; 3(х-8). По условию: х+х-8+х+8+3(х-8)=66, 6х-24=66, 6х=90, х=15. Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см. 3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85° Значит ∠АВD =180-85-30=65°. ∠АВС=∠АВD+∠СВD=65°+65°=130°. Проведем другую диагональ АС. ΔАВС по условию равнобедренный: АВ=ВС. Значит углы при основании равны (180-130):2=25°. ∠САD=85-25=60°. Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD. Углы четырехугольника: 95°, 50°, 130°, 85°.
Боковая поверхность призмы равна произведению периметра основания на высоту призмы. Нужно найти высоту и периметр. Высота призмы равна H = V/Sосн. , Sосн = ½ d1d2, Sосн = 1/2·16·30 = 240 см2. Н = 4800:240 = 20 (см).
Все стороны ромба равны, его периметр основания Р = 4а, найдем сторону ромба . Диагонали ромба в точке пересечения делятся пополам, и перпендикулярны друг другу, сторону ромба найдем из теоремы Пифагора. а =(64+225 )= 17 (см). Р = 4·17 = 68 (см).
ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса.
ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС.
ΔАВО=ΔСВО , значит АВ=ВС=2,7 см.
Периметр равен 2(2,7+2,9)=2·5,6=11,2 см.
2) Обозначим длину сторон: х; х-8: х+8; 3(х-8).
По условию:
х+х-8+х+8+3(х-8)=66,
6х-24=66,
6х=90,
х=15.
Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см.
3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85°
Значит ∠АВD =180-85-30=65°.
∠АВС=∠АВD+∠СВD=65°+65°=130°.
Проведем другую диагональ АС.
ΔАВС по условию равнобедренный: АВ=ВС.
Значит углы при основании равны (180-130):2=25°.
∠САD=85-25=60°.
Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD.
Углы четырехугольника: 95°, 50°, 130°, 85°.
Боковая поверхность призмы равна произведению периметра основания на высоту призмы. Нужно найти высоту и периметр. Высота призмы равна H = V/Sосн. , Sосн = ½ d1d2, Sосн = 1/2·16·30 = 240 см2. Н = 4800:240 = 20 (см).
Все стороны ромба равны, его периметр основания Р = 4а, найдем сторону ромба . Диагонали ромба в точке пересечения делятся пополам, и перпендикулярны друг другу, сторону ромба найдем из теоремы Пифагора. а =(64+225 )= 17 (см). Р = 4·17 = 68 (см).
Sбок = P·H, Sбок =68·20 = 1360 (см2)
ответ: 1360 см2