Один из острых углов прямоугольника треугольника равна 60*. Найдите его другой острый угол.ответ дайте в градусах.Чему равна сторона,лежащая напротив найденного угла, если гипотенуза равна 8.
Суммы противоположных сторон этой трапеции равны. Поэтому средняя линия равна боковой стороне. Высота трапеции равна 2R, поэтому (a + b)/2 = S/(2R); это - и полусумма оснований, и боковая сторона. Если теперь опустить перпендикуляр из вершины меньшего основания на большее, то она разобьет основание на отрезки, равные (a - b)/2 и (a + b)/2; (говоря на правильном математическом жаргоне, проекция боковой стороны равнобедренной трапеции на основание равна (a - b)/2, это легко увидеть, если провести высоты из обеих вершин меньшего основания, между концами высот будет отрезок b, два других равны между собой, то есть (a - b)/2;) Отсюда (a - b)/2 = √((S/2R)^2 - (2R)^2); Складывая эти два равенства, легко найти a = S/(2R) + √((S/2R)^2 - (2R)^2); ну, и b = S/(2R) - √((S/2R)^2 - (2R)^2);
Расстояние от вершины прямого угла до гипотенузы - это высота из прямого угла, с которой образовались 2 прямоугольных треугольника внутри большого. Теперь данный катет будет являться гипотенузой, а искомое расстояние от вершины прямого угла до гипотенузы большого треугольника - это катет, лежащий против угла в 30°, который равен половине гипотенузы, т. е. 34 см : 2 = 17 см ответ: h = 17 см
Дано: Тр-к АВС; < C = 90° <B = 30° BC = 34 см CK | AB
СК - ?
Решение Рассмотрим тр-к ВСК - прямоугольный, < СКВ = 90° ; <В = 30° ; ВС = 34 см - гипотенуза; СК - катет,против угла в 30° СК = 1/2 * ВС СК = 1/2 * 34 см = 17 см ответ: СК = 17 см
(a + b)/2 = S/(2R);
это - и полусумма оснований, и боковая сторона.
Если теперь опустить перпендикуляр из вершины меньшего основания на большее, то она разобьет основание на отрезки, равные (a - b)/2 и (a + b)/2;
(говоря на правильном математическом жаргоне, проекция боковой стороны равнобедренной трапеции на основание равна (a - b)/2, это легко увидеть, если провести высоты из обеих вершин меньшего основания, между концами высот будет отрезок b, два других равны между собой, то есть (a - b)/2;)
Отсюда (a - b)/2 = √((S/2R)^2 - (2R)^2);
Складывая эти два равенства, легко найти a = S/(2R) + √((S/2R)^2 - (2R)^2);
ну, и b = S/(2R) - √((S/2R)^2 - (2R)^2);
Теперь данный катет будет являться гипотенузой, а искомое расстояние от вершины прямого угла до гипотенузы большого треугольника - это катет, лежащий против угла в 30°, который равен половине гипотенузы,
т. е. 34 см : 2 = 17 см
ответ: h = 17 см
Дано:
Тр-к АВС; < C = 90°
<B = 30°
BC = 34 см
CK | AB
СК - ?
Решение
Рассмотрим тр-к ВСК - прямоугольный, < СКВ = 90° ; <В = 30° ; ВС = 34 см - гипотенуза; СК - катет,против угла в 30°
СК = 1/2 * ВС
СК = 1/2 * 34 см = 17 см
ответ: СК = 17 см