Чертим параллелограмм с острым углом слева внизу, а с большими сторонами горизонтально. Обозначаем вершины начиная с нижней левой по часовой стрелке A,B,C,D. Обозначим АВ=CD=4X, BC=AD=9X. Пусть дана биссектриса угла A. Она пересекает сторону ВС в точке Е. Проводим EF параллельно АВ. ABCD -ромб, АЕ его диагональ. Тогда: AB=BE=EF=AF=CD=4X, EC=FD=9X-4X=5X. Пусть АЕ=Y. Периметр треугольника AB+BE+AE=4X+4X+Y Периметр оставшейся части AE+EC+CD+AD=Y+5X+4X+9X Разность периметров (Y+18X)-(Y+8X)=10X. 10X=10, X=1. Периметр параллелограмма 2*(4X+9X)=26X=26. Вроде так.
Пусть будет ромб АВСD, проведём диагонали, они пересекутся в точке Н. Диагонали ромба, как известно, перпендикулярны, к тому же точкой пересечения делятся пополам, значит, ВН=HD, АН=НС=АС\2=2. Тогда ВН= Кстати, все четыре получившихся треугольника равны по трём сторонам. Синус угла АВН = , тогда сам угол равен 41 градус 49 минут. Второй острый угол этого треугольника равен 48 градусов 11 минут. Тогда угол B = угол D = 2*(41 градус 49 минут)=83 градуса 38 минут. Угол А = угол С = 2*(48 градусов 11 минут)=96 градусов 22 минуты. ответ: 83 градуса 38 минут и 96 градусов 22 минуты.
Обозначаем вершины начиная с нижней левой по часовой стрелке A,B,C,D. Обозначим АВ=CD=4X, BC=AD=9X.
Пусть дана биссектриса угла A. Она пересекает сторону ВС в точке Е. Проводим EF параллельно АВ. ABCD -ромб, АЕ его диагональ. Тогда:
AB=BE=EF=AF=CD=4X, EC=FD=9X-4X=5X.
Пусть АЕ=Y.
Периметр треугольника AB+BE+AE=4X+4X+Y
Периметр оставшейся части AE+EC+CD+AD=Y+5X+4X+9X
Разность периметров (Y+18X)-(Y+8X)=10X.
10X=10, X=1.
Периметр параллелограмма 2*(4X+9X)=26X=26.
Вроде так.
Кстати, все четыре получившихся треугольника равны по трём сторонам. Синус угла АВН = , тогда сам угол равен 41 градус 49 минут. Второй острый угол этого треугольника равен 48 градусов 11 минут. Тогда угол B = угол D = 2*(41 градус 49 минут)=83 градуса 38 минут.
Угол А = угол С = 2*(48 градусов 11 минут)=96 градусов 22 минуты.
ответ: 83 градуса 38 минут и 96 градусов 22 минуты.