Пусть один из углов равен х - градусов, тогда вертикальный к нему равен тоже х градусов. Остальные два вертикальных угла равны (180-х)°. Так как односторонний к углу в х градусов равен (180-х)°, а таких угла два при пересечении двух прямых.
Сумма трех углов без первого угла в х градусов равна:
х+(180-х)+(180-х)=360-х (*)
По условию задачи известно, что эта сумма (*) больше градусной меры угла в х градусов на 260°.
Составим уравнение
360-х=х+260
360-260=х+х
100=2х
2х=100
х=100:2
х=50° - мера первого угла
180-50=130° - мера второго угла.
Остальные два угла равны предыдущим, так как вертикальные.
Получается, что два угла по 50° , а два других угла по 130°
Любопытно, что площадь трапеции равна квадрату её средней линии.
Пояснение: т.к. трапеция равнобокая, ее диагонали равны и точка пересечения дает нам 2 равнобедренных треугольника, опирающихся на верхнее и нижнее основания трапеции. Высота пирамиды h будет равна сумме высот этих 2х треугольников, опущенных на основания, а т.к. высота прямоугольного равнобедренного треугольника равна половине его основания, то высота трапеции - сумма высот ∆ков - равна половине суммы оснований трапеции
два угла по 50° и два угла по 130°
Объяснение:
Пусть один из углов равен х - градусов, тогда вертикальный к нему равен тоже х градусов. Остальные два вертикальных угла равны (180-х)°. Так как односторонний к углу в х градусов равен (180-х)°, а таких угла два при пересечении двух прямых.
Сумма трех углов без первого угла в х градусов равна:
х+(180-х)+(180-х)=360-х (*)
По условию задачи известно, что эта сумма (*) больше градусной меры угла в х градусов на 260°.
Составим уравнение
360-х=х+260
360-260=х+х
100=2х
2х=100
х=100:2
х=50° - мера первого угла
180-50=130° - мера второго угла.
Остальные два угла равны предыдущим, так как вертикальные.
Получается, что два угла по 50° , а два других угла по 130°
S = ½•(a+b)•h = ½•(30+16)•23= 529
Объяснение:
Любопытно, что площадь трапеции равна квадрату её средней линии.
Пояснение: т.к. трапеция равнобокая, ее диагонали равны и точка пересечения дает нам 2 равнобедренных треугольника, опирающихся на верхнее и нижнее основания трапеции. Высота пирамиды h будет равна сумме высот этих 2х треугольников, опущенных на основания, а т.к. высота прямоугольного равнобедренного треугольника равна половине его основания, то высота трапеции - сумма высот ∆ков - равна половине суммы оснований трапеции