Накреслимо дві прямі АВ і CD, які перетинаються в точці O (рис. 1). При цьому утворяться чотири кути, менших від розгорнутого: кути AOC, COB, BOD та AOD. Зверніть увагу на те, що сторони кута AOC є доповняльними променями до сторін кута BOD, а сторони кута COB — доповняльними променями до сторін кута AOD.
Два кути, сторони одного з яких є доповняльними променями до сторін іншого, називають вертикальними кутами.
На рис. 58 вертикальними кутами є кути АОС і BOD, а також кути COB і AOD. Вертикальні кути на цьому рисунку зафарбовано однаковим кольором.
Вертикальні кути здаються нам рівними — чи не так? Можна, звичайно, перевірити це за до транспортира, але спробуймо замість вимірювань вдатися до міркувань.
Розглянемо, наприклад, вертикальні кути 1 і 2 на рисунку 1. Кожний з цих кутів є суміжним кутом для одного і того ж кута 3. Суми градусних мір суміжних кутів дорівнюють 180°, тому
1 + 3 = 180°, 2 + 3 = 180°.
Праві частини цих рівностей рівні, тому рівні й ліві частини, тобто 1 + 3 = 2 + 3. Звідси випливає, що 1 = 2. Таким чином, ми дійшли висновку, що вертикальні кути рівні.
Проведене міркування є прикладом доведення: ми, не проводячи вимірювань, встановили, що вертикальні кути рівні. Більш того: ми довели, що будь-які вертикальні кути рівні, а це встановити вимірюванням просто неможливо, бо вертикальних кутів існує нескінченно багато!
Доведемо тепер, що коли один з кутів, які утворилися при перетині двох прямих, дорівнює 90°, тобто є прямим, то й усі інші кути, менші від розгорнутого, теж є прямими.
Нехай, наприклад, 1 = 90° (рис. 2). Кути 1 і 2 суміжні, тому 1 + 2 = 180°. Звідки 2 = 180° – 90° = 90°. Кути 1 і 3, а також 2 і 4 є вертикальними, тому 3 = 1 = 90° і 4 = 2 = 90°. Отже, 1 = 2 = 3 = 4 = 90°.
Менший з кутів, що утворилися при перетині двох прямих, називають кутом між цими прямими. Наприклад, кут між прямими АВ і CD на рис. 3 дорівнює кутові АОС або рівному йому кутові BOD.
Задача. Два з чотирьох кутів, що утворилися при перетині двох прямих, відносяться, як 4 : 5. Знайти градусну міру кожного з кутів, що утворилися.
Розв'язання. Два кути, які утворилися в результаті перетину двох прямих, або суміжні, або вертикальні .Cкільки вертикальні кути рівні:
АКВ = СКВ, АКС =ВКВ, то кути, про які йде мова у задачі,— це суміжні кути. Наприклад, АКВ і АКС. Оскільки АКВ: АКС = 4 : 5, то можемо позначити АКВ = 4х, АКС = 5х. За властивістю суміжних кутів: 4х+ 5х = 180°. Звідси х = 20°. Тоді АКВ = 4 • 20° = 80°, АКС = 5 • 20° = 100°. Далі: СКD = АКВ = 80°, ВКD =АКС = 100°.
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
Объяснение:
Накреслимо дві прямі АВ і CD, які перетинаються в точці O (рис. 1). При цьому утворяться чотири кути, менших від розгорнутого: кути AOC, COB, BOD та AOD. Зверніть увагу на те, що сторони кута AOC є доповняльними променями до сторін кута BOD, а сторони кута COB — доповняльними променями до сторін кута AOD.
Два кути, сторони одного з яких є доповняльними променями до сторін іншого, називають вертикальними кутами.
На рис. 58 вертикальними кутами є кути АОС і BOD, а також кути COB і AOD. Вертикальні кути на цьому рисунку зафарбовано однаковим кольором.
Вертикальні кути здаються нам рівними — чи не так? Можна, звичайно, перевірити це за до транспортира, але спробуймо замість вимірювань вдатися до міркувань.
Розглянемо, наприклад, вертикальні кути 1 і 2 на рисунку 1. Кожний з цих кутів є суміжним кутом для одного і того ж кута 3. Суми градусних мір суміжних кутів дорівнюють 180°, тому
1 + 3 = 180°, 2 + 3 = 180°.
Праві частини цих рівностей рівні, тому рівні й ліві частини, тобто 1 + 3 = 2 + 3. Звідси випливає, що 1 = 2. Таким чином, ми дійшли висновку, що вертикальні кути рівні.
Проведене міркування є прикладом доведення: ми, не проводячи вимірювань, встановили, що вертикальні кути рівні. Більш того: ми довели, що будь-які вертикальні кути рівні, а це встановити вимірюванням просто неможливо, бо вертикальних кутів існує нескінченно багато!
Доведемо тепер, що коли один з кутів, які утворилися при перетині двох прямих, дорівнює 90°, тобто є прямим, то й усі інші кути, менші від розгорнутого, теж є прямими.
Нехай, наприклад, 1 = 90° (рис. 2). Кути 1 і 2 суміжні, тому 1 + 2 = 180°. Звідки 2 = 180° – 90° = 90°. Кути 1 і 3, а також 2 і 4 є вертикальними, тому 3 = 1 = 90° і 4 = 2 = 90°. Отже, 1 = 2 = 3 = 4 = 90°.
Менший з кутів, що утворилися при перетині двох прямих, називають кутом між цими прямими. Наприклад, кут між прямими АВ і CD на рис. 3 дорівнює кутові АОС або рівному йому кутові BOD.
Задача. Два з чотирьох кутів, що утворилися при перетині двох прямих, відносяться, як 4 : 5. Знайти градусну міру кожного з кутів, що утворилися.
Розв'язання. Два кути, які утворилися в результаті перетину двох прямих, або суміжні, або вертикальні .Cкільки вертикальні кути рівні:
АКВ = СКВ, АКС =ВКВ, то кути, про які йде мова у задачі,— це суміжні кути. Наприклад, АКВ і АКС. Оскільки АКВ: АКС = 4 : 5, то можемо позначити АКВ = 4х, АКС = 5х. За властивістю суміжних кутів: 4х+ 5х = 180°. Звідси х = 20°. Тоді АКВ = 4 • 20° = 80°, АКС = 5 • 20° = 100°. Далі: СКD = АКВ = 80°, ВКD =АКС = 100°.
Відповідь. 80°; 100°; 80°; 100°.
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
нашли полную поверхность