Треугольники АВ1В и АА1В прямоугольные с общей гипотенузой АВ, значит оба они вписаны в одну окружность с диаметром АВ. Точка О - центр окружности. АО=ВО=АВ/2=4/2=2. В тр-ке АА1В1 ОА1=ОВ1=R=2. По теореме косинусов cos(А1ОВ1)=(ОА1²+ОВ1²-А1В1²)/(2·ОА1·ОВ1)= (2²+2²-(2√3)²)/(2·2·2)=-4/8=-1/2. ∠А1ОВ1=arccos(-1/2)=120°. Если точка пересечения двух секущих к окружности находится вне окружности, то угол между секущими равен половине разности дуг, которые они высекают. В нашем случае АС и ВС - секущие, значит: ∠АСВ=(∩АВ-∩А1В1)/2=(180°-120°)/2=30° - это ответ.
Правильный тетраэдр - правильный многогранник (пирамида), все грани которого правильные треугольники
a - длина ребра тетраэдра Н=? пусть MABC правильный тетраэдр. МО=Н - высота тетраэдра О - точка пересечения медиан, высот, биссектрис правильного треугольника (основания пирамиды), которые в точке пересечения делятся в отношении 2:1, считая от вершины высота правильного треугольника вычисляется по формуле:
OA=2√6 прямоугольный ΔМОА: Гипотенуза МА=6√2 см катет АО=2√6 см катет МО=Н, найти по теореме Пифагора: МО²=(6√2)²-(2√6)², МО²=√48. МО=4√3 см. Н=4√3 см
Точка О - центр окружности. АО=ВО=АВ/2=4/2=2.
В тр-ке АА1В1 ОА1=ОВ1=R=2.
По теореме косинусов cos(А1ОВ1)=(ОА1²+ОВ1²-А1В1²)/(2·ОА1·ОВ1)= (2²+2²-(2√3)²)/(2·2·2)=-4/8=-1/2.
∠А1ОВ1=arccos(-1/2)=120°.
Если точка пересечения двух секущих к окружности находится вне окружности, то угол между секущими равен половине разности дуг, которые они высекают. В нашем случае АС и ВС - секущие, значит:
∠АСВ=(∩АВ-∩А1В1)/2=(180°-120°)/2=30° - это ответ.
a - длина ребра тетраэдра
Н=?
пусть MABC правильный тетраэдр. МО=Н - высота тетраэдра
О - точка пересечения медиан, высот, биссектрис правильного треугольника (основания пирамиды), которые в точке пересечения делятся в отношении 2:1, считая от вершины
высота правильного треугольника вычисляется по формуле:
OA=2√6
прямоугольный ΔМОА:
Гипотенуза МА=6√2 см
катет АО=2√6 см
катет МО=Н, найти по теореме Пифагора:
МО²=(6√2)²-(2√6)², МО²=√48. МО=4√3 см. Н=4√3 см