так как 1 угол равен 90 градусов, то это прямоугольный треугольник.
в прямоугольном треугольнике катет лежащий против угла 30 градусов равен половине гипотенузы.
PD=1,2см и лежит напротив угла Q(30 градусов) значит PD равен половине гипотенузы(наибольшая сторона треугольника - PQ), значит PQ = 2PD
PQ = 1,2 * 2 = 2,4
4 задача
так как 1 угол равен 90 градусов, то это прямоугольный треугольник.
обратное свойство прямоугольного треугольника: если катет(сторона) равен половине гипотенузы(наибольшая сторона треугольника), то он(катет) лежит против угла 30 градусов.
AB = 4,2см это половина гипотенузы(CB), значит AB лежит против угла 30 градусов, то есть угол C равен 30 градусов.
Нужно найти угол B.
можно использовать два
первый
сумма всех углов треугольника равна 180 градусов. Чтобы найти угол B нужно вычесть из 180 градусов угол A(90 градусов) и угол C(30 градусов) получаем, что угол B = 60 градусов
второй
в прямоугольном треугольнике один угол равен 90 градусов, и сумма двух других равна 90 градусов.
значит нужно из 90 градусов вычесть угол C(30 градусов) значит угол B равен 60 градусов
На стороне ВС параллелограмма ABCD отмечена такая точка М, что ВМ : МС = 1 : 3. Чему равна площадь треугольника АВМ, если площадь параллелограмма равна S?
Чертёж смотрите во вложении.
Дано:
Четырёхугольник ABCD - параллелограмм.
Точка М ∈ ВС.
ВМ : МС = 1 : 3.
S(ABCD) - S.
Найти:
S(ΔАВМ) = ?
Пусть ВМ = х, тогда МС = 3х, АВ = у. Площадь ΔАВМ обозначим как S₁.
Площадь параллелограмма равна произведению смежных сторон и синусу угла между ними.
Следовательно -
S(ABCD) = ВС*АВ*sin (∠В)
ВС = ВМ+МС = х+3х = 4х.
То есть -
S = 4ху*sin (∠В)
Рассмотрим ΔАВМ.
Площадь треугольника равна половине произведения смежных сторон и синуса угла меду ними.
То есть -
S(ΔАВМ) = 0,5*ВМ*АВ*sin (∠В)
S₁ = 0,5*хy*sin (∠В).
Из первого уравнения системы следует, что -
Подставим это значения во второе уравнение системы -
Объяснение:
3 задача
так как 1 угол равен 90 градусов, то это прямоугольный треугольник.
в прямоугольном треугольнике катет лежащий против угла 30 градусов равен половине гипотенузы.
PD=1,2см и лежит напротив угла Q(30 градусов) значит PD равен половине гипотенузы(наибольшая сторона треугольника - PQ), значит PQ = 2PD
PQ = 1,2 * 2 = 2,4
4 задача
так как 1 угол равен 90 градусов, то это прямоугольный треугольник.
обратное свойство прямоугольного треугольника: если катет(сторона) равен половине гипотенузы(наибольшая сторона треугольника), то он(катет) лежит против угла 30 градусов.
AB = 4,2см это половина гипотенузы(CB), значит AB лежит против угла 30 градусов, то есть угол C равен 30 градусов.
Нужно найти угол B.
можно использовать два
первый
сумма всех углов треугольника равна 180 градусов. Чтобы найти угол B нужно вычесть из 180 градусов угол A(90 градусов) и угол C(30 градусов) получаем, что угол B = 60 градусов
второй
в прямоугольном треугольнике один угол равен 90 градусов, и сумма двух других равна 90 градусов.
значит нужно из 90 градусов вычесть угол C(30 градусов) значит угол B равен 60 градусов
На стороне ВС параллелограмма ABCD отмечена такая точка М, что ВМ : МС = 1 : 3. Чему равна площадь треугольника АВМ, если площадь параллелограмма равна S?
Чертёж смотрите во вложении.
Дано:
Четырёхугольник ABCD - параллелограмм.
Точка М ∈ ВС.
ВМ : МС = 1 : 3.
S(ABCD) - S.
Найти:
S(ΔАВМ) = ?
Пусть ВМ = х, тогда МС = 3х, АВ = у. Площадь ΔАВМ обозначим как S₁.
Площадь параллелограмма равна произведению смежных сторон и синусу угла между ними.
Следовательно -
S(ABCD) = ВС*АВ*sin (∠В)
ВС = ВМ+МС = х+3х = 4х.
То есть -
S = 4ху*sin (∠В)
Рассмотрим ΔАВМ.
Площадь треугольника равна половине произведения смежных сторон и синуса угла меду ними.
То есть -
S(ΔАВМ) = 0,5*ВМ*АВ*sin (∠В)
S₁ = 0,5*хy*sin (∠В).
Из первого уравнения системы следует, что -
Подставим это значения во второе уравнение системы -
S(ΔАВМ) = S(ABCD)/8
S(ΔАВМ) = S/8.
ответ: S/8.