Проведем в равнобедренном треугольнике высоту из вершины треугольника на его основание.Высота в равнобедренном треугольнике является медианой,биссектрисой>высота делит основание на 2 равные части равные 36.Рассмотрим прямоугольный треугольник нам известна гипотенуза(она же сторона равнобедренного треугольника) и основание(оно же является половиной основания равнобедренного треугольника).По теореме Пифагора найдем неизвестную часть треугольника(она же высота в равнобедренном треугольнике) высота^2=39^2-36^2,высота=15 S=(a*h(a))/2=(72*15)/2=540 ответ:540
По 1 аксиоме Гильберта плоскость АВС существует, По 3 – М и К и , соответсвенно Х принадлежат этой плоскости .
Аксиоматика Гильберта
1. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует плоскость α, которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка. 2. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти точки. 3. Если две принадлежащие прямой a различные точки A и B принадлежат некоторой плоскости α, то каждая принадлежащая прямой a точка принадлежит указанной плоскости. 4. Если существует одна точка A, принадлежащая двум плоскостям α и β, то существует по крайней мере ещё одна точка B, принадлежащая обеим этим плоскостям. 5. Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.
S=(a*h(a))/2=(72*15)/2=540
ответ:540
По 1 аксиоме Гильберта плоскость АВС существует,
По 3 – М и К и , соответсвенно Х принадлежат этой плоскости .
Аксиоматика Гильберта
1. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует плоскость α, которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка.
2. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти точки.
3. Если две принадлежащие прямой a различные точки A и B принадлежат некоторой плоскости α, то каждая принадлежащая прямой a точка принадлежит указанной плоскости.
4. Если существует одна точка A, принадлежащая двум плоскостям α и β, то существует по крайней мере ещё одна точка B, принадлежащая обеим этим плоскостям.
5. Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.