Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
ΔАВС - равнобедренный ⇒ ∠А= ∠С - углы при основании равны АВ=ВС - боковые стороны равны АС - основание. По условию ∠А= 2∠В ⇒ ∠А =∠C > ∠В Напротив большего угла лежит большая сторона, а напротив большей стороны - больший угол ⇒ АВ=ВС = 16 см , АС = 4 см. Площадь треугольника можно найти по формуле Герона: S= √ (р *(р-а)(р-b)(р-с) ) р- полупериметр ; a,b,c - стороны треугольника ⇒ т.к. ΔАВС - равнобедренный ⇒ S= √ р *2(р-АВ)(р-АС) р= (АВ+ВС+АС)/2 = (16*2+4)/2 = 18 см S= √(18*2(18-16)(18-4) ) = √(18*2*2*14 ) = √1008 =√(144*7)= 12√7 см
∠А= ∠С - углы при основании равны
АВ=ВС - боковые стороны равны
АС - основание.
По условию ∠А= 2∠В ⇒ ∠А =∠C > ∠В
Напротив большего угла лежит большая сторона, а напротив большей стороны - больший угол ⇒ АВ=ВС = 16 см , АС = 4 см.
Площадь треугольника можно найти по формуле Герона:
S= √ (р *(р-а)(р-b)(р-с) )
р- полупериметр ; a,b,c - стороны треугольника
⇒ т.к. ΔАВС - равнобедренный ⇒ S= √ р *2(р-АВ)(р-АС)
р= (АВ+ВС+АС)/2 = (16*2+4)/2 = 18 см
S= √(18*2(18-16)(18-4) ) = √(18*2*2*14 ) = √1008 =√(144*7)= 12√7 см
ответ: S = 12√7 см.