В равнобедренном треугольнике высота на основание (она же и биссектриса и медиана угла против основания) равна: Н = √(а² - (в/2)²) = √(100 - 36) = √64 = 8. Точка пересечения биссектрис лежит на высоте Н на расстоянии ДО₂: ДО₂ = (в/2)*tg(A/2). tg(A/2) = √((1 - cos A) / (1+cos A)). cos A = (b/2) / c = (12/2) / 10 = 6 / 10 = 3 / 5. tg(A/2) = √((1-(3/5)( / (1+(3/5)) =√((2/5) / (8/5)) = √(1/4) = 1/2 Тогда ДО₂ = 6*(1/2) = 3. Медианы пересекаются в точке О₁, расстояние ДО₁ = (1/3) *Н = 8/3. Отсюда расстояние между точкой пересечения биссектрис и точкой пересечения медиан равно:3 - (8/3) = (9-8) / 3 = 1 / 3.
Н = √(а² - (в/2)²) = √(100 - 36) = √64 = 8.
Точка пересечения биссектрис лежит на высоте Н на расстоянии ДО₂:
ДО₂ = (в/2)*tg(A/2).
tg(A/2) = √((1 - cos A) / (1+cos A)).
cos A = (b/2) / c = (12/2) / 10 = 6 / 10 = 3 / 5.
tg(A/2) = √((1-(3/5)( / (1+(3/5)) =√((2/5) / (8/5)) = √(1/4) = 1/2
Тогда ДО₂ = 6*(1/2) = 3.
Медианы пересекаются в точке О₁, расстояние ДО₁ = (1/3) *Н = 8/3.
Отсюда расстояние между точкой пересечения биссектрис и точкой пересечения медиан равно:3 - (8/3) = (9-8) / 3 = 1 / 3.
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²