Одну из глав поэмы за далью даль охарактеризуйте самостоятельно.
из глав поэмы «За далью -
даль» охарактеризуйте само-
Перечитайте её.
Определите основную тему.
Какие образы раскрыть тему, созданы поэтом?
Каковы композиция главы и её сюжет?
Отметьте наличие лирических отступлений, из место и темы.
Охарактеризуйте речь; обратите внимание на афористические
выражения.
Особо на примере отдельных фрагментов остановитесь на систе-
ме изобразительных средств (тропы и фигуры в главе).
Определите стихотворный размер.
В качестве вывода подготовьте размышление об образе автора и
его отношении к изображаемому.
Объяснение:Если в основании лежит квадрат, то пирамиду называется четырехугольной, если треугольник – то треугольной. Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:
S_bok=1/2 Pa
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Отже, площа трапеції дорівнює 16 см².