Около правильного n-угольника описана окружность и в него вписана окружность. Докажите, что разность квадратов диаметров этих окружностей равна квадрату стороны данного n-угольника
Диагональ квадрата является биссектрисой угла В квадрата, значит высота треугольника MBN - это и биссектриса и медиана треугольника MBN, а стороны квадрата AD и СD - средние линии этого треугольника, так как они параллельны сторонам BN и BM соответственно и проходят через середину стороны MN треугольника. Сторона квадрата равна 15,5/√2 (так как диагональ равна 15,5 - дано). Тогда ВN=BM=31/√2, а MN=√(BN²+BM²) = 31 ед. ответ: MN=31 ед.
Второй вариант: треугольник DBN (и DBM) - прямоугольный равнобедренный, так как острый угол DBN (как и <DBM)=45°. Значит DN=DM=DB=15,5. тогда MN=2*15,5=31 ед. ответ: MN=31 ед.
Сторона квадрата равна 15,5/√2 (так как диагональ равна 15,5 - дано).
Тогда ВN=BM=31/√2, а MN=√(BN²+BM²) = 31 ед.
ответ: MN=31 ед.
Второй вариант: треугольник DBN (и DBM) - прямоугольный равнобедренный, так как острый угол DBN (как и <DBM)=45°. Значит DN=DM=DB=15,5. тогда MN=2*15,5=31 ед.
ответ: MN=31 ед.
1) угол А = углу В(св-ва трапеции) => угол В = 75
2) угол В + угол Д= 180=> угол Д= 180 - угол В=> 180-75=105
3) угол А + угол С = 180=> угол С= 180- угол А=> 180-75=105
ответ: угол В = Угол В = 75
Угол Д=угол С = 105
Н2
1) СД= половина СА (катет, лежащий напротив угла 30 гр = половине гипотенузы) => СА= 2СД=> СА =4•2=8 см
2) СА=ДВ (свойства прямоугольника) => ДВ=8 см
Н4
1) Угол А=углу С(свойства ромба) => Угол С=60 гр
2) угол ВСО=60гр:2, т.к. АС - биссектриса угла С(свойства ромба)=> ВСО=30 гр
3) угол СОВ=90 гр, т.к. АС перпендикулярна БД(свойства ромба)
4) угол СОВ+ угол ВСО+ угол СВО=180 гр(сумма внутр углов треугольника) => угол СВО =180- угол ВСО- угол СОВ=180-90-30=60
ответ: угол СВО=60
Угол ВСО=30
Угол СОВ =90