Около правильного треугольника авс со стороной 12 описана окружность с центром о 1) найдите площадь сектора, содержащего дугу ас 2) какой отрезок является образом стороны вс при повороте вокруг центра о против часовой стрелки на угол 120 градусов
Объяснение: известно, что периметр нашего ромба 16см, значит длина одной стороны будет:16/4=4см.
Найдем сторону подобного ромба. Известны его диагонали. Диагонали в точке пересечения делятся пополам и образуют 4 прямоугольных треугольника с катетами 4 и 8 см. Боковая сторона находится по теореме Пифагора: √4²+8²=√16+64=√80=8,9см.
Отношение сторон подобного ромба к нашему равно: 8,9/4=2,23.
Находим диагонали нашего ромба: d1=4/2,23=1,79 см. d2=8/2,23=3,59см.
Находим площадь нашего ромба: S=1/2*d1*d2=0,5*1,79*3,59=3,21см²
Диагонали параллелограмма делят его на два равных треугольника. ПРИЗНАКИ Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.
Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника ABCD. Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.
ответ: 3,21см²
Объяснение: известно, что периметр нашего ромба 16см, значит длина одной стороны будет:16/4=4см.
Найдем сторону подобного ромба. Известны его диагонали. Диагонали в точке пересечения делятся пополам и образуют 4 прямоугольных треугольника с катетами 4 и 8 см. Боковая сторона находится по теореме Пифагора: √4²+8²=√16+64=√80=8,9см.
Отношение сторон подобного ромба к нашему равно: 8,9/4=2,23.
Находим диагонали нашего ромба: d1=4/2,23=1,79 см. d2=8/2,23=3,59см.
Находим площадь нашего ромба: S=1/2*d1*d2=0,5*1,79*3,59=3,21см²
1. Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.
2.СВОЙСТВА В параллелограмме противоположные стороны равны и противоположные углы равны: , , , .
Диагонали параллелограмма точкой пересечения делятся пополам: , .
Углы, прилежащие к любой стороне, в сумме равны .
Диагонали параллелограмма делят его на два равных треугольника. ПРИЗНАКИ Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.
Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника ABCD. Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.
3.Прости незнаю на 3
Объяснение: