MO = ON, KO = OZ т.к. диагонали параллелограмма в точке пересечения делятся пополам
MA = AO, OC = CN по условию.
AO = MO : 2, OC = ON : 2 По условию.
MO = ON Из этого следует, что AO = OC
KB = BO, OD = DZ по условию.
BO = KO : 2, OC = OZ : 2 По KO = OZ Из этого следует, что BO = OD
Рассмотрим четырёхугольник ABCD
Диагональ BD в точке О делит диагональ AC на 2 равных отреДиагональ AC в точке О делит диагональ BD на 2 равных отрезка
ответ: Четырёхугольник ABCD является параллелограммом т.к. его диагонали делятся пополам в очке пересечения
3.Решение:
Средняя линия треугольника равна половине основания треугольника, следовательно основание треугольника равно: 7*2=14 (м) , т.к. меньшее основание образовавшейся трапеции, есть средняя линия треугольника, равная 7м
Зная что средняя линия треугольника делит боковые стороны трегольника пополам, боковые стороны треугольники равны:
2.Рассмотрим параллелограмм MKNZ.
MO = ON, KO = OZ т.к. диагонали параллелограмма в точке пересечения делятся пополам
MA = AO, OC = CN по условию.
AO = MO : 2, OC = ON : 2 По условию.
MO = ON Из этого следует, что AO = OC
KB = BO, OD = DZ по условию.
BO = KO : 2, OC = OZ : 2 По KO = OZ Из этого следует, что BO = OD
Рассмотрим четырёхугольник ABCD
Диагональ BD в точке О делит диагональ AC на 2 равных отреДиагональ AC в точке О делит диагональ BD на 2 равных отрезка
ответ: Четырёхугольник ABCD является параллелограммом т.к. его диагонали делятся пополам в очке пересечения
3.Решение:
Средняя линия треугольника равна половине основания треугольника, следовательно основание треугольника равно: 7*2=14 (м) , т.к. меньшее основание образовавшейся трапеции, есть средняя линия треугольника, равная 7м
Зная что средняя линия треугольника делит боковые стороны трегольника пополам, боковые стороны треугольники равны:
- первая 5*2=10(м)
-вторая 6*2=12(м)
Отсюда:
периметр треугольника равен: 14+10+12=36(м)
ответ: Р=36м
4......
Это естественно не мой ответы :)
Объяснение:
1. 2, 3
1) ∠PBK и ∠MBL-смежные.
Нет, они вертикальные
2) ∠PBL и ∠MBK-вертикальнвые.
Да, они верикальные, т.к. продолжение сторон одного угла является стороной другого
3) ∠MBK-острый угол.
Да, ∠PBL=∠MBK=72°
72°<90°
4) ∠MBL-прямой угол.
Нет, ∠PBL и ∠MBL-смежные
∠MBL=180°-72°=108°
108°>90°, угол тупой
2. 52°
MA-биссектриса угла, следовательно, она делит угол на две равные части:
∠KMA=∠AML=104°/2=52°
3. ∠DCE=124°
∠DCE и ∠FCE смежные=>∠DCE=180°-56°=124°
4. DC=7см; CF=14см
FD=DC+CF
FD=DC+CF
DC-x
CF-2x
x+2x=21
3x=21
x=7
DC=7 см
CF=14 см
5. ∠NMK=48°
∠KMN=∠OMN-∠OMK=78-30=48°