В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
аааааааа36
аааааааа36
14.04.2022 04:30 •  Геометрия

Окружность касается сторон ав вс и ас треугольника авс в точках к л и м соответственно, причём мк=мл. докажите что ав=вс

Показать ответ
Ответ:
fionovaa
fionovaa
16.05.2022 09:37

Дано:

ABCDA_1B_1C_1D_1 - Правильная усеченная пирамида

AA_1=8cm (ребро)

A_1C=4\sqrt{5} (диагональ)

Найти: AB-?

1) Проведём две высоты к плоскости ABCD из вершин A_1 и C_1  И отметим их как H и H_1 соответственно.

2)Рассмотрим полученный треугольник AHA_1; По чертежу видно, что этот треугольник прямоугольный и один из его острых углов равен 60 градусов, что означает что второй его угол равен 30 градусам, следовательно если нам известна AA_1, то можно и найти AH

AH=\frac{1}{2}AA_1=\frac{8}{2}=4 (Против угла в 30 градусов лежит катет равный половине гипотенузы).

3)Поскольку пирамида правильная, то высоты, которые были проведены в 1 пункте делят диагональ квадрата ABCD на 3 отрезка, причем AH=H_1C=4

4) Используя правило прямоугольного треугольника, при двух его известных сторонах и углу, можно найти другую сторону этого треугольника: A_1H=AA_1*Sin60=8*\frac{\sqrt{3} }{2}=4\sqrt{3}

5)Следует детально рассмотреть треугольник CHA_1 В нем известны две стороны, и он прямоугольный, а значит можно найти CH по теореме Пифагора. CH=\sqrt{A_1C^{2} -A_1H_2} =\sqrt{ 80-48}=\sqrt{32}=4\sqrt{2}.

6)Отсюда можно найти AC.

AC=4+4\sqrt{2}. Знаю эту величину можем найти искомую АB.

Поскольку в основании правильной усеченной четырёхугольной пирамиды лежит квадрат. AB=\sqrt{AC^{2} -BC^{2} }; Но также стоит заметить, что AB\sqrt{2}=AC, но второй намного легче, чем мучиться с преобразованием корневых выражений. AB\sqrt{2}=4+4\sqrt{2} \\AB=\frac{4(1+\sqrt{2} )}{\sqrt{2} } =\frac{4\sqrt{2}+ 8}{2} =2\sqrt{2}+4

ответ: AB= двум корней из двух плюс 4


Боковое ребро правильной четырёхугольной усечённой пирамиды равно 8 см и наклонено к плоскости основ
0,0(0 оценок)
Ответ:
ilmir123456789
ilmir123456789
22.04.2022 02:02
Задание 1.
Доказать, что диагонали делят параллелограмм на 4 равновеликих треугольника.
Доказательство.
Диагонали параллелограмма точкой пересечения делятся пополам.
Пусть половина первой диагонали = а, а половина второй диагонали = b.
Значит площадь каждого из получившихся треугольников равна
(1/2)a*b*Sinα - формула, где α - угол между диагоналями.
Углы, образованные при пересечении диагоналей - смежные и равны
α и 180-α.
Поскольку Sin(180-α) = Sinα (формула), то площади всех 4 треугольников равны.
Что и требовалось доказать.
Задание 2.
Найти площадь равнобокой трапеции с основаниями 15 см и 39 см, в которой диагональ перпендикулярна к боковой стороне.
Решение.
Поскольку высота из тупого угла равнобедренной трапеции делит основание на отрезки, меньший из которых равен полуразности оснований = 12см (свойство), а высота нашей трапеции - высота прямоугольного треугольника из прямого угла, то эта высота по ее свойствам равна
h=√((39-12)*12)=18см. Тогда площадь трапеции равна по формуле
S=(AD+BC)*h/2 :
S=(39+15)*18/2=486см².
Задание 3.
Соответствующие стороны двух подобных треугольников относятся как 2 : 3. Площадь второго треугольника равна 81 см2. Найдите площадь первого треугольника.
Площади подобных треугольников относятся как квадрат коэффициента подобия. Значит S1=(2/3)²*S2.
S1=(4/9)*81=36см².
Задание 4.
Основания трапеции относятся как 2:3, а ее площадь равна 50 см2. Найти площади:
а) двух треугольников, на которые данная трапеция делится диагональю
б) четырех треугольников, на которые данная трапеция делится диагоналями.
Решение.
Диагонали трапеции делят ее на 4 треугольника, из которых два, прилежащих к основаниям, подобны, а два прилежащих к боковым сторонам, равновелики (равны по площади).
а). Sabcd=(2x+3x)*h/2 =50см² (площадь трапеции дана).  =>
5xh=100см²  и  xh=20см².
Sabd=Sacd=(1/2)*3xh = 30см².
Sabo=Scod= Sabcd-Sabd= 50-30=20см².
ответ: 30см² и 20см².
б) Sboc=(1/2)*2x*(2/5)h=0,4*xh =0,4*20=8см².
Saod=(1/2)*3x*(3/5)h=0,9*xh =0,9*20=18см².
Saob=Saod=Sabd-Scod=(1/2)*3xh - 0,9*xh = 06xh =12см².
ответ: Sboc=8см²,Saod=18см², Saob=Saod=12см².
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота