18
Объяснение:
точно правильно
O - центр окружности, O∈AC
Радиус соединяет центр с точкой на окружности.
Точка C на окружности, OC - радиус, OC=1,8
AO=AC-OC =10-1,8 =8,2
AB - касательная, B - точка касания.
Радиус в точку касания перпендикулярен касательной.
OB=1,8 (радиус), OB⊥AB, ∠ABO=90°
△ABO, теорема Пифагора:
AB =√(AO^2-OB^2) =√(8,2^2 -1,8^2) =8
18
Объяснение:
точно правильно
O - центр окружности, O∈AC
Радиус соединяет центр с точкой на окружности.
Точка C на окружности, OC - радиус, OC=1,8
AO=AC-OC =10-1,8 =8,2
AB - касательная, B - точка касания.
Радиус в точку касания перпендикулярен касательной.
OB=1,8 (радиус), OB⊥AB, ∠ABO=90°
△ABO, теорема Пифагора:
AB =√(AO^2-OB^2) =√(8,2^2 -1,8^2) =8