В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
aruukewa123
aruukewa123
21.11.2022 03:19 •  Геометрия

Окружность,заданная уравнением x2+y2=12,пересекает положительную полуось ox в точке m,точка k лежит на окружности,её абсцисса равна -2.найдите площадь треугольника okm.

Показать ответ
Ответ:
Загадочник12
Загадочник12
23.06.2020 22:26
Если М пересекает окружность то она имеет координаты 
M(\sqrt{12};0) , так как радиус равен R=\sqrt{12},
тогда что бы получился треугольник нужно что бы  точка К по оси ординат отличалась  от 0, то есть K(-2;y)\\
 y \neq 0
Если О это начало координат то, координата 
y=\sqrt{\sqrt{12}^2-2^2}=\sqrt{8}\\
K(-2;\sqrt{8})
тогда площадь треугольника 
Найдем угол между сторонами ОК и ОМ , по скалярному произведению рассмотрим как векторы 
cosa = \frac{-2\sqrt{12}}{\sqrt{12}*\sqrt{12}}=-\frac{\sqrt{3}}{3}\\
sina=\frac{\sqrt{6}}{3}\\
S_{OKM}=\frac{12}{2}*\frac{\sqrt{6}}{3}=2\sqrt{6}
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота