Объем такого параллелепипеда равен произведению его трех измерений. Одно из этих измерений равно 11см. Пусть оставшиеся измерения равны X и Y. Тогда периметр параллелепипеда равен 4*X+4*Y+4*11 =96см. Или X+Y=13 см. (1) Х=13-Y (2). Площадь полной поверхности параллелепипеда: S=2*(11*X)+2*(11*Y)+2*X*Y=370 см². Или 11*X+11*Y+X*Y=185 см². Или 11(X+Y)+X*Y=185 см². Подставим значение (1): 11*13+X*Y=185 => X*Y=42. Подставим значение из (2): Y²-13Y+42=0. Решаем это квадратное уравнение: Y1=(13+√(169-168)/2 = 7см. => X1=6см Y2=(13-1)/2=6см. => X2 =6см. Тогда объем параллелепипеда равен 6*7*11=462см³. ответ: V=462см³.
Одно из этих измерений равно 11см. Пусть оставшиеся измерения равны X и Y. Тогда периметр параллелепипеда равен 4*X+4*Y+4*11 =96см. Или
X+Y=13 см. (1) Х=13-Y (2).
Площадь полной поверхности параллелепипеда:
S=2*(11*X)+2*(11*Y)+2*X*Y=370 см². Или
11*X+11*Y+X*Y=185 см². Или
11(X+Y)+X*Y=185 см². Подставим значение (1):
11*13+X*Y=185 => X*Y=42. Подставим значение из (2):
Y²-13Y+42=0. Решаем это квадратное уравнение:
Y1=(13+√(169-168)/2 = 7см. => X1=6см
Y2=(13-1)/2=6см. => X2 =6см.
Тогда объем параллелепипеда равен 6*7*11=462см³.
ответ: V=462см³.
Объяснение:
Медиана – это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону
Биссектриса треугольника – это отрезок, соединяющий вершину треугольника с противоположной стороной и делящий угол при вершине пополам.
1) ON – медиана треугольника МОК – неверно, на чертеже нет никаких данных о том, что точка N –середина отрезка МК
2) ON – высота треугольника МОК – неверно, на чертеже нет никаких данных о том, что ∠MNO=90°.
3) ЕН – высота треугольника DEC – верно, так как ∠EHD=90°
4) BP – медиана треугольника АВD – верно, так как AР=РD=7, то есть, точка Р -середина отрезка AD
5) ВР – биссектриса треугольника ABD – неверно, на чертеже нет никаких данных о том, что ∠ABP