3. Рассматриваем треугольник АВН - прямоугольный, угол В - 90-60=30°, против угла 30° лежит катет в два раза меньше гипотенузы, следовательно: АН=3/2=1,5 см.
По т. Пифагора находим высоту ВН - √(3²-1,5²)=1,5√3;
4. Рассматриваем треугольник ВНД - прямоугольный, НД=5-1,5=3,5 см, ВН=1,5√3. По т. Пифагора находим гипотенузу ВД (диагональ параллелограмма):
так как ABCD-ромб ( все его стороны равны так как ромб так же является параллелограмом),то для нахождения сторон нужно периметр разделить на 4:
24/4=6см .все углы ромба в сумме равны 360°,<ВАD=<BCD(так как ром это параллелограмм а у него противолежащие углы равны),<ABC=<BCD=(360°-120°)/2=240°/2=120°.
диагонали ромба являются биссекрисами углов значит <АBD=<АDB=60°(180°-60°/2)
так как все углы треугольника <ABC равны ,то этот треугольник равносторонний и его стороны равны 6 см.
средняя линия треугольника равна половине его основания,значит МК=6/2=3см
1. Угол Д параллелограмма равен - 180-60=120°, следовательно:
угол А параллелограмма равен - 180-120=60°;
2. Проведем высоту ВН;
3. Рассматриваем треугольник АВН - прямоугольный, угол В - 90-60=30°, против угла 30° лежит катет в два раза меньше гипотенузы, следовательно: АН=3/2=1,5 см.
По т. Пифагора находим высоту ВН - √(3²-1,5²)=1,5√3;
4. Рассматриваем треугольник ВНД - прямоугольный, НД=5-1,5=3,5 см, ВН=1,5√3. По т. Пифагора находим гипотенузу ВД (диагональ параллелограмма):
ВД=√(3,5²+(1,5√3)²)=√19.
так как ABCD-ромб ( все его стороны равны так как ромб так же является параллелограмом),то для нахождения сторон нужно периметр разделить на 4:
24/4=6см .все углы ромба в сумме равны 360°,<ВАD=<BCD(так как ром это параллелограмм а у него противолежащие углы равны),<ABC=<BCD=(360°-120°)/2=240°/2=120°.
диагонали ромба являются биссекрисами углов значит <АBD=<АDB=60°(180°-60°/2)
так как все углы треугольника <ABC равны ,то этот треугольник равносторонний и его стороны равны 6 см.
средняя линия треугольника равна половине его основания,значит МК=6/2=3см
ответ:3см.