Определить взаимное расположение прямой и окружности, если:
1. R=16 см d=22 см
2. R=5 см d=4 см
3. R=7,2 дм d=1,7 дм
4. R=5 см d=1,2 дм
5. R=6 см d=60 мм
а) прямая и окружность не имеют общих точек.
б) прямая является касательной к окружности.
в) прямая пересекает окружность.
d- расстояние от центра окружности до прямой, R- радиус окружности.
1) по формуле Герона
Полупериметр р=(10+10+12):2=16 см
S=√(p(p-a)(p-b)(p-c)=√(16*6*6*4)=√2304=48 см²
48=1/2 * 10 * h₁
h₁=9,6 см
48=1/2 * 12 * h₂
h₂=8 см.
2) по формуле Герона
Полупериметр р=(17+17+16):2=25 дм
S=√(p(p-a)(p-b)(p-c)=√(25*8*8*9)=√14400=120 дм²
120=1/2 * 17 * h₁
h₁=14 2/17 дм
120=1/2 * 16 * h₂
h₂=15 дм.
3) по формуле Герона
Полупериметр р=(4+13+15):2=16 дм
S=√(p(p-a)(p-b)(p-c)=√(16*12*3*1)=√576=24 дм²
24=1/2 * 4 * h₁
h₁=12 дм
48=1/2 * 13 * h₂
h₂=7 5/13 дм.
48=1/2 * 15 * h₃
h₃ = 6 6/7 дм.
а) 52+40√3 см²
б) 43√3см²
Объяснение:
а)
Дано:
ABCDA1B1C1D1- усеченная пирамида.
АВ=ВС=СD=DA=4см
А1В1=В1С1=С1D1=D1A1=6см
КК1=2√3- апофема
Sпол.=?
Решение
SABCD=AB²=4²=16 см² площадь верхнего основания.
SA1B1C1D1=A1B1²=6²=36 см² площадь нижнего основания.
Формула нахождения площади боковой поверхности:
Sбок=1/2*(Р1+Р2)*k, где Р1-периметр верхнего основания, Р2- периметр нижнего основания, k- апофема.
k=KK1=2√3см. по условию
Р1=4*АВ=4*4=16см периметр верхнего основания
Р2=4*А1В1=4*6=24 см периметр нижнего основания.
Sбок=2√3*(16+24)/2=2√3*40/2=40√3 см² площадь боковой поверхности пирамиды.
Sпол.=SABCD+SA1B1C1D1+Sбок=
=16+36+40√3=52+40√3 см² площадь полной поверхности пирамиды.
ответ:52+40√3 см² площадь полной поверхности пирамиды.
б)
Дано:
ABCA1B1C1 - усеченная пирамида.
АВ=ВС=АС=4см
А1В1=В1С1=А1С1=6см
КК1=2√3см апофема
Sпол=?
Решение
SABC=AB²√3/4=4²√3/4=4√3см² площадь верхнего основания.
SA1B1C1=A1B1²√3/4=6²√3/4=9√3 см² площадь нижнего основания
РАВС=3*АВ=3*4=12см периметр верхнего основания
РА1В1С1=3*А1В1=3*6=18см периметр нижнего основания.
Sбок=КК1*РАВС+РА1В1С1)/2=2√3(18+12)/2=
=2√3*30/2=30√3 см² площадь боковой поверхности пирамиды.
Sпол=SABC+SA1B1C1+Sбок=
=30√3+4√3+9√3=43√3см² площадь полной поверхности пирамиды
ответ: 43√3см²