Верны ли утверждения?
1) В треугольнике со сторонами 2, 3 и 4 косинус угла, лежащего против меньшей стороны, меньше, чем 2/3.
Проверим по теореме косинусов:2²=3²+4²-2*12 *cosх4=9+16 - 24cosх24cosх=21cosх=7/8ответ: неверно.
2)Всякий треугольник можно разрезать на 4 равных треугольника.
Верно. Для этого нужно провести средние линии, параллельно каждой стороне треугольника.
3)Если площадь треугольника со сторонами 3 и 4 равна 6, то третья сторона треугольника равна 5.
Верно. Это прямоугольный треугольник с катетами 3 и 4 (египетский, в которм гипотенуза равна 5. Можно проверить по теореме Пифагора)
МN=27см, NK=21 см, KL=27 см, ML=21 см.
Объяснение:
1) Биссектриса пересекает противоположное основание, в результате чего образуется равнобедренный треугольник NBK, что следует из равенства углов:
угол MNB = углу BNK - согласно условию задачи;
угол MNB = углу KBN - как углы углы внутренние накрест лежащие при параллельных MN и LK и секущей NB);
значит, угол BNK равен углу KBN, и, следовательно, треугольник KBN является равнобедренным.
В этом равнобедренном треугольнике BК = 7, согласно условию задачи, а NK = BK как сторона равнобедренного треугольника.
Отсюда: NK = 7 частей.
2) Выразим периметр параллелограмма в частях:в частях:
- большая сторона равна 7 частей + 2 части = 9 частей;
- меньшая сторона равна 7 частей;
- всего (9+7) * 2 = 32 части.
3) Так как периметр = 96 см, то длина одной части составляет:
96 : 32 = 3 см
4) Находим стороны параллелограмма:
МN = KL = 9 * 3 = 27 см;
NK = ML = 7 * 3 = 21 см.
Проверка: 27*2 + 21*2= 54+42= 96
ответ: МN=27см, NK=21 см, KL=27 см, ML=21 см.
Верны ли утверждения?
1) В треугольнике со сторонами 2, 3 и 4 косинус угла, лежащего против меньшей стороны, меньше, чем 2/3.
Проверим по теореме косинусов:
2²=3²+4²-2*12 *cosх
4=9+16 - 24cosх
24cosх=21
cosх=7/8
ответ: неверно.
2)Всякий треугольник можно разрезать на 4 равных треугольника.
Верно. Для этого нужно провести средние линии, параллельно каждой стороне треугольника.
3)Если площадь треугольника со сторонами 3 и 4 равна 6, то третья сторона треугольника равна 5.
Верно. Это прямоугольный треугольник с катетами 3 и 4 (египетский, в которм гипотенуза равна 5. Можно проверить по теореме Пифагора)
МN=27см, NK=21 см, KL=27 см, ML=21 см.
Объяснение:
1) Биссектриса пересекает противоположное основание, в результате чего образуется равнобедренный треугольник NBK, что следует из равенства углов:
угол MNB = углу BNK - согласно условию задачи;
угол MNB = углу KBN - как углы углы внутренние накрест лежащие при параллельных MN и LK и секущей NB);
значит, угол BNK равен углу KBN, и, следовательно, треугольник KBN является равнобедренным.
В этом равнобедренном треугольнике BК = 7, согласно условию задачи, а NK = BK как сторона равнобедренного треугольника.
Отсюда: NK = 7 частей.
2) Выразим периметр параллелограмма в частях:в частях:
- большая сторона равна 7 частей + 2 части = 9 частей;
- меньшая сторона равна 7 частей;
- всего (9+7) * 2 = 32 части.
3) Так как периметр = 96 см, то длина одной части составляет:
96 : 32 = 3 см
4) Находим стороны параллелограмма:
МN = KL = 9 * 3 = 27 см;
NK = ML = 7 * 3 = 21 см.
Проверка: 27*2 + 21*2= 54+42= 96
ответ: МN=27см, NK=21 см, KL=27 см, ML=21 см.