Основание пирамиды прямоугольный треугольник с гипотенузой 15 см и одним из катетов 9 см. Из вершины прямого угла этого треугольника проведён перпендикуляр к его плоскости, равный 5 см. Найдите площади двух боковых граней пирамиды перпендикулярных основанию и объем пирамиды
Подставив вместо р и r, получим
Упрощать здесь не буду, но напишу упрощенный
Или имеем такое равенство:
Пусть расстояния от точки G к сторонам a, b, c треугольника АВС. Очевидно, что Также имеем. Аналогично,
Достаточно доказать неравентсво , которое равносильна неравенству, что выражает отношение между средним арифметическим и средним гармоническим 3 положительных чисел:
Проведем вторую (короткую) диагональ ромба.
Две диагонали разделили ромб на 4 равных прямоугольных треугольника, т.к. в ромбе диагонали пересекаются под прямым углом и, как в любом параллелограмме, точкой пересечения делятся пополам.
В каждом из них гипотенуза равна стороне ромба, а длинный катет равен половине известной диагонали.
Пусть половина неизвестной диагонали равна х.
По т.Пифагора
х²=65²-60²=625
х=25
Вторая диагональ равна 25*2=50
S=50*120:2=3000 ед. площади.
(Можно вычислить площадь одного треугольника и результат умножить на 4)