Основание прямого параллелепипеда - ромб с большей диагональю 8 см. Меньшая диагональ параллепипеда образует с плоскостью основания угол 30 градусов. Боковое ребро равно 2√3. Найдите площадь полной поверхности параллепипеда.
(С чертежом максимально полно)
Теперь, если прямые не пересекаются, то они параллельны. Но нам известно, что прямая пересекает одну из двух параллельных прямых, соответственно, она не может быть параллельной (не пересекаться) со второй. Это следствие вытекает из аксиомы. Если бы она не пересекала вторую, значит и к первой была бы параллельна.
Примечание. Все вышесказанное справедливо для прямых относящихся (принадлежащих) одной плоскости.
Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника.
По теореме Пифагора сторона ромба
а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x²
а=х√13
Из формул для вычисления площади треугольника АОВ
S(Δ AOB)=AO·OB/2
и
S(Δ AOB)=AB·OE/2
находим OE
AO·OB=AB·OE
OE=2x·3x/х√13=6х/√13.
Из треугольника АОЕ по теореме Пифагора
AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13
AE=4x/√13
S(Δ AOE)=AE·OE/2
(4x/√13)·(6x/√13)=54
24x²=54·13
x²=9·13/4
S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13=
=351 кв. ед