Можно найти точки пересечения прямой СД с прямыми АМ и АВ для получения координат точек К и Д.
Пусть треугольник расположен в прямоугольной системе координат точкой С в начале, СВ по оси Ох.
Длину ВС примем равной 2 для удобства, АС = 2/√3.
Угловой коэффициент прямой СД равен √3, прямой АМ равен (-2/√3).
Точка К как пересечение СД и АМ: √3х = (-2/√3)х + (2/√3).
3х = -2х + 2,
5х = 2 х =2/5 = 0,4.
Точка Д как пересечение СД и АВ: √3х = (-1/√3)х + (2/√3).
3х = -1х + 2,
4х = 2 х =2/4 = 0,5.
Наклонные отрезки СК и СД пропорциональны их горизонтальным проекциям (это координаты по оси Ох).
Тогда СК:СД = 4/5.
ответ: СК:КД = 4:1.
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60
Можно найти точки пересечения прямой СД с прямыми АМ и АВ для получения координат точек К и Д.
Пусть треугольник расположен в прямоугольной системе координат точкой С в начале, СВ по оси Ох.
Длину ВС примем равной 2 для удобства, АС = 2/√3.
Угловой коэффициент прямой СД равен √3, прямой АМ равен (-2/√3).
Точка К как пересечение СД и АМ: √3х = (-2/√3)х + (2/√3).
3х = -2х + 2,
5х = 2 х =2/5 = 0,4.
Точка Д как пересечение СД и АВ: √3х = (-1/√3)х + (2/√3).
3х = -1х + 2,
4х = 2 х =2/4 = 0,5.
Наклонные отрезки СК и СД пропорциональны их горизонтальным проекциям (это координаты по оси Ох).
Тогда СК:СД = 4/5.
ответ: СК:КД = 4:1.
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
По теореме Пифагора
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60