Основанием пирамиды является квадрат. Две боковые грани пирамиды перпендикулярны к плоскости основания. Наибольшее боковое ребро пирамиды образует с высотой угол β . Расстояние от основания высоты пирамиды до середины этого ребра равно d. Найдите объём пирамиды.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
7) 90
8) 75 и 105
Объяснение:
7) Так как AD = DC, угол DCA = DAC = 45 (углы при основании AC в равнобедренном треугольнике). Следовательно, угол D = 180 - 45 - 45 = 90.
По свойству параллелограмма противолежащие углы равны, следовательно, угол В = D = 90.
Также сумма соседних углов = 180, следовательно, угол А = 180 - угол D = 180 - 90 = 90.
Угол С = 180 - угол D = 180 - 90 = 90.
8) Угол Р = 90 - угол LKP = 75.
По свойству параллелограмма, противолежащие углы равны, то есть угол N = P = 75.
По свойству параллелограмма сумма соседних углов = 180. То есть:
Угол M = K = 180 - P = 180 - N = 180 - 75 = 105