Основанием пирамиды является прямоугольный треугольник с катетами 12 см и 16 см. Каждое боковое ребро наклонено к плоскости основания под углом 60°. Найдите объем пирамиды
Из условия имеем, треугольник MAD, прямоугольный, и угол между плоскостями равен углу MAD треугольника, следовательно MD = Тангенс(30)*AD, MA = 2*MD.
Теперь если считать Центром квадрата точку О, то MО - расстояние от вершины пирамиды до прямой AC. Треугольник MDО - прямоугольный, DО - половина диагонали квадрата, находим легко, и вычисляем MО как гипотенузу, по известным двум катетам MD и DО.
Площадь теперь тоже найти не трудно: это сумма площадей квадрата, прямоугольного треугольника MAD (стороны известны), прямоугольного треугольника MCD, равного MAD, прямоугольного треугольника MAB равного MBC, в которых тоже уже известны все стороны и не сложно посчитать площадь
ответ в приложенном рисунке. Диаметр искомой окружности равен сумме радиусов данных концентрических окружностей, то есть 12см. Следовательно, радиус искомой окружности равен 6см. Есть второй вариант расположения концентрических окружностей и окружности, касающейся их: окружность касается концентрических окружностей с одной стороны от центра концентрических окружностей. Тогда диаметр искомой окружности равен разности радиусов концентрических окружностей, то есть 8-4=4см. Следовательно, радиус искомой окружности равен 2см.
Теперь если считать Центром квадрата точку О, то MО - расстояние от вершины пирамиды до прямой AC. Треугольник MDО - прямоугольный, DО - половина диагонали квадрата, находим легко, и вычисляем MО как гипотенузу, по известным двум катетам MD и DО.
Площадь теперь тоже найти не трудно:
это сумма площадей квадрата, прямоугольного треугольника MAD (стороны известны), прямоугольного треугольника MCD, равного MAD, прямоугольного треугольника MAB равного MBC, в которых тоже уже известны все стороны и не сложно посчитать площадь
Диаметр искомой окружности равен сумме радиусов данных концентрических окружностей, то есть 12см. Следовательно, радиус искомой окружности равен 6см.
Есть второй вариант расположения концентрических окружностей и окружности, касающейся их: окружность касается концентрических окружностей с одной стороны от центра концентрических окружностей. Тогда диаметр искомой окружности равен разности радиусов концентрических окружностей, то есть 8-4=4см. Следовательно, радиус искомой окружности равен 2см.