Основания прямоугольной трапеции равны 18 см и 15 см,а меньшая боковая сторона 12 см. Найдите площадь трапеции. 2)Площадь ромба,диагонали которого относятся как 2:3,равны 192 см квадрате.Найдите меньшую диагональ ромба.
высоту этой фигуры можно найти из прямоугольного треугольника, образованного длинной диагональю основания, большей диагональю параллелепипеда и высотой.
длинную диагональ основания можно найти по теореме косинусов. знаем длину двух сторон треугольника, образованного сторонами основания, а угол между ними равен
180-60=120°
квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см
высоту этой фигуры можно найти из прямоугольного треугольника, образованного длинной диагональю основания, большей диагональю параллелепипеда и высотой.
длинную диагональ основания можно найти по теореме косинусов. знаем длину двух сторон треугольника, образованного сторонами основания, а угол между ними равен
180-60=120°
квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a2 = 32 + 52 - 2bc·cos(120)
a²=34-30·(-0,5)=49
a=7
теперь очередь дошла до высоты параллелограмма.
h²=25²-7²=574
h=24 cм