пусть
длина медаины АА1=а
длина медины СС1=с
точка персечения О делит медианы на отрезки -свойство медиан
СО=2/3*с
ОС1=1/3*с
АО=2/3*а
ОА1=1/3*а
треугольники АОС1 и СОА1 - прямоугольные ,
т к медианы треугольника АА1 и СС1 пресекаются под углом 90 градусов
тогда по теореме Пифагора
СО^2 +OA1^2 =CA1^2 подставим сюда а , c CA1=16/2
(2/3*с)^2 +(1/3*а)^2= (16/2)^2 (1)
ОC1^2 +OA^2 =AC1^2 подставим сюда а , c AC1=12/2
(1/3*с)^2 +(2/3*а)^2= (12/2)^2 (2)
решим систему двух уравнений (1) и (2)
здесь а =4√3 с=2√33
теперь найдем сторону АС
по теореме Пифагора
АС^2= (2/3*c)^2 +(2/3*a)^2=(2/3)^2*(c^2+a*2)=(2/3)^2*((2√33)^2+(4√3)^2)=80
AC=√80 =4√5
ответ AC=4√5
1) Высота ромба перпендикулярна обеим противолежащим сторонам. -- угол СВЕ=90°, угол FВЕ=СВЕ-CBF=90°-30°=60°⇒
∠ВСF=30°
Противоположные углы параллелограмма равны. ⇒ ВЕ противолежит углу 30°, гипотенуза АВ треугольника АВЕ=2•6=12 см
Все стороны ромба равны ⇒
Р=12•4=48 см
———
2) Обозначим наклонные ВА и ВС;
ВН - расстояние от т.В до прямой. ВА=22 см, угол АВС=45°
ВН⊥АС.
Сумма острых углов прямоугольного треугольника равна 90°⇒
∆ АВН - равнобедренный.
ВН=АВ•sin45°=11√2
Из прямоугольного ∆ ВСН гипотенуза
ВС=√(BH²+CH²)=√(242+82)=18 см
пусть
длина медаины АА1=а
длина медины СС1=с
точка персечения О делит медианы на отрезки -свойство медиан
СО=2/3*с
ОС1=1/3*с
АО=2/3*а
ОА1=1/3*а
треугольники АОС1 и СОА1 - прямоугольные ,
т к медианы треугольника АА1 и СС1 пресекаются под углом 90 градусов
тогда по теореме Пифагора
СО^2 +OA1^2 =CA1^2 подставим сюда а , c CA1=16/2
(2/3*с)^2 +(1/3*а)^2= (16/2)^2 (1)
ОC1^2 +OA^2 =AC1^2 подставим сюда а , c AC1=12/2
(1/3*с)^2 +(2/3*а)^2= (12/2)^2 (2)
решим систему двух уравнений (1) и (2)
здесь а =4√3 с=2√33
теперь найдем сторону АС
по теореме Пифагора
АС^2= (2/3*c)^2 +(2/3*a)^2=(2/3)^2*(c^2+a*2)=(2/3)^2*((2√33)^2+(4√3)^2)=80
AC=√80 =4√5
ответ AC=4√5
1) Высота ромба перпендикулярна обеим противолежащим сторонам. -- угол СВЕ=90°, угол FВЕ=СВЕ-CBF=90°-30°=60°⇒
∠ВСF=30°
Противоположные углы параллелограмма равны. ⇒ ВЕ противолежит углу 30°, гипотенуза АВ треугольника АВЕ=2•6=12 см
Все стороны ромба равны ⇒
Р=12•4=48 см
———
2) Обозначим наклонные ВА и ВС;
ВН - расстояние от т.В до прямой. ВА=22 см, угол АВС=45°
ВН⊥АС.
Сумма острых углов прямоугольного треугольника равна 90°⇒
∆ АВН - равнобедренный.
ВН=АВ•sin45°=11√2
Из прямоугольного ∆ ВСН гипотенуза
ВС=√(BH²+CH²)=√(242+82)=18 см