Сторона c- гипотенуза прямоугольного треугольника, а т.к. она лежит напротив угла С, то этот самый гол будет равен 90 градусам. По теореме Пифагора найдём сторону b в прямоугольном треугольнике с прямым углом С: 17^2=8^2+b^2 b=√17^2-8^2=√225=15 По таблице Брадиса найду примерное значение угла В через его синус, который равен 15:17=0,88235. Его примерная градусная мера равна 62-ум градусам. Отсюда находим примерную градусную меру угла А=180-90-62=28. ответ:b=15 см,угол С=90 градусов, угол А=28 градусов, угол В=62 градуса.
Для начала вспомним, что для расчета объема потребуется высота пирамиды. Мы можем найти ее по теореме Пифагора. Для этого нам потребуется длина диагонали, а точнее – ее половина. Тогда зная две из сторон прямоугольного треугольника, мы сможем найти высоту. Для начала находим диагональ: d^2=a^2+a^2 Подставим значения в формулу: d^2=6^2+6^2=36+36=72 cm
Высоту h мы найдем с и ребра b: h=sqrt{{d/2}^2+b^2} h=sqrt{{{72}/2}^2+5^2}=sqrt{36+25}=sqrt{61}=7,8 cm
Теперь найдем площадь квадрата, который лежит в основании правильной пирамиды: S=6^2=36{cm}^2 Подставим найденные значения в формулу расчета объема: V={1/3}*36*7,8=14,6{cm}^3
Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a, то можно найти значение по следующей формуле: S_bok={1/2}a sqrt{5^2-{{6^2}/4}}=3*sqrt 16}=12
Площадь всей пирамиды равна: S=4*S_bok + S_osn= 4*12 + 36=84
По теореме Пифагора найдём сторону b в прямоугольном треугольнике с прямым углом С:
17^2=8^2+b^2
b=√17^2-8^2=√225=15
По таблице Брадиса найду примерное значение угла В через его синус, который равен 15:17=0,88235.
Его примерная градусная мера равна 62-ум градусам.
Отсюда находим примерную градусную меру угла А=180-90-62=28.
ответ:b=15 см,угол С=90 градусов, угол А=28 градусов, угол В=62 градуса.
d^2=a^2+a^2
Подставим значения в формулу:
d^2=6^2+6^2=36+36=72 cm
Высоту h мы найдем с и ребра b:
h=sqrt{{d/2}^2+b^2}
h=sqrt{{{72}/2}^2+5^2}=sqrt{36+25}=sqrt{61}=7,8 cm
Теперь найдем площадь квадрата, который лежит в основании правильной пирамиды:
S=6^2=36{cm}^2
Подставим найденные значения в формулу расчета объема:
V={1/3}*36*7,8=14,6{cm}^3
Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a, то можно найти значение по следующей формуле:
S_bok={1/2}a sqrt{5^2-{{6^2}/4}}=3*sqrt 16}=12
Площадь всей пирамиды равна:
S=4*S_bok + S_osn= 4*12 + 36=84