А) В треугольнике BCD отрезок МК - средняя линия, т.к. соединяет середины сторон. Значит MKIIBD, MK=1/2BD, отсюда BD=2*MK=2√5 см <DBC=<BDA как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей BD. В прямоугольном треугольнике ADB находим косинус угла BDA, зная катет BD и гипотенузу AD: cos BDA= BD/AD=2√5/2√10=1/√2=√2/2. Значит <BDA=<DBC=45°
б) Рассмотрим прямоугольный треугольник CDE. Здесь tg ECD=DE/CE, отсюда DE=tg ECD*CE=3CE и СЕ=DE/3 В прямоугольном треугольнике ВСЕ видим, что <BCE=180-<CEB-<CBE=180-90-45=45°, значит треугольник ВСЕ - равнобедренный, т.к. углы при его основании ВС равны ВЕ=СЕ, но СЕ=DE/3, значит ВЕ=DE/3. Значит DE/BE=3/1 Таким образом, отрезок BD состоит из 4 частей, каждая из которых равна: BD/4=2√5/4=√5/2 см Значит ВЕ=1 часть=√5/2 см
ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Объяснение:
ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
BD=2*MK=2√5 см
<DBC=<BDA как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей BD. В прямоугольном треугольнике ADB находим косинус угла BDA, зная катет BD и гипотенузу AD:
cos BDA= BD/AD=2√5/2√10=1/√2=√2/2. Значит
<BDA=<DBC=45°
б) Рассмотрим прямоугольный треугольник CDE. Здесь tg ECD=DE/CE, отсюда DE=tg ECD*CE=3CE и СЕ=DE/3
В прямоугольном треугольнике ВСЕ видим, что
<BCE=180-<CEB-<CBE=180-90-45=45°,
значит треугольник ВСЕ - равнобедренный, т.к. углы при его основании ВС равны
ВЕ=СЕ, но СЕ=DE/3, значит ВЕ=DE/3. Значит
DE/BE=3/1
Таким образом, отрезок BD состоит из 4 частей, каждая из которых равна:
BD/4=2√5/4=√5/2 см
Значит ВЕ=1 часть=√5/2 см
ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Объяснение:
ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.