АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Объяснение:
Треугольники подобные т.к. данные стороны соответственно пропорциональны
Для нахождения углов будем использовать теорему косинусов.
а^2 =в^2+с^2 - 2вс*CosА
CosА=(в^2+с^2-а^2)/2вс
СоsВ=(а^2+с^2-в^2)/2ас
СоsС=(а^2+в^2-с^2)/2ав
Причём соответственные углы ∆ов
А проверку можно сделать по теореме синусов
SinA/a = SinB/b = SinC/c
покажу на примере одного угла.
СоsC = (6^2+7^2-4^2)/(2*6*7)=69/84
CosC = 0,82143.
CosB = (4^2+7^2-6^2)/(2*4*7)=29/56
CosB = 0,51786
Найдёшь значение по таблице брадиса
<А=<М;. <С=<N;. <B=<K равенство углов вытекает из подобия треугольников.
СоsK=(8^2+14^2-12^2)/(2*8*14)=116/224
CosK=0,51786
CosM=(8^2+12^2-14^2)/(2*8*12)=12/96
CosM=0,1250
CosN=(12^2+14^2-8^2)/(2*12*14)
CosN=276/336=0,82143
CocA = (4^2+6^2-7^2)/(2*4*6)=
Помимо этого угол А можно найти как <А = 180-(<С+<В)
Удачи