Основою піраміди є прямокутник.діагональ прямокутника дорівнює d і утворює з його стороною кут y. усі бічні ребра піраміди нахилені до площини основи під кутом а.знайдіть об'єм піраміди. поясніть будь ласка детально.
Задача составлена некорректно, но вычислить размер меньшего катета можно.
По условию d=СM=5, h=CK=7, АС - меньший катет и ∠В - меньший из острых. СК=АС·ВС/АВ ⇒⇒ СК/АС=ВС/АВ. По теореме биссектрис СМ/АМ=ВС/АВ. Объединим два уравнения: СК/АС=СМ/АМ, АС=СК·АМ/СМ=СК·(АС-СМ)/СМ=h(AC-d)/d, d·АС=h·АС-dh, AC(h-d)=dh, AC=dh/(h-d)=5·7/(7-5)=17.5, Не похоже, что это меньший из катетов, ведь высота СК=7, а это намного меньше этого катета. Найдём второй катет. АМ=АС-СМ=[dh/(h-d)]-d=d²/(h-d), Опять, по т. биссектрис СМ/АМ=ВС/АВ, АВ=АМ·ВС/СМ=d·BC/(h-d). По теореме Пифагора АВ²=АС²+ВС², d²·BC²/(h-d)²=[d²h²/(h-d)²]+BC², (d²·BC²-BC²(h-d)²)/(h-d)²=d²h²/(h-d)², BC²=d²h²/(d²-(h-d)²), ВС=dh/√(d²-(h-d)²)=5·7/√(5²-(7-5)²)≈7.6, ВС<АС, значит ВС - меньший из катетов. ответ: 7.6
Чтобы построить биссектрису уугла, надо построить окружность любого радиуса в центре в вершине угла. Затем построить две окружности, у которых радиусы равны длине отрезка между пересечением первой окружности со сторонами угла и центрами которых являются данные точки пересечения окружности со сторонами (радиус изображён на фото оранжевым цветом). Эти две окружности пересекутся в двух точках. Нужно соединить эти точки. Получится биссектриса PL угла P. Затем надо построить окружность с радиусом, равным длине данного в условии отрезку PQ в центре P. Данная окружность пересечёт биссектриса в точке Q. Таким образом, точка Q, лежащая на биссектриса угла, удалена от вершины угла на расстояние PQ.
По условию d=СM=5, h=CK=7, АС - меньший катет и ∠В - меньший из острых.
СК=АС·ВС/АВ ⇒⇒ СК/АС=ВС/АВ.
По теореме биссектрис СМ/АМ=ВС/АВ. Объединим два уравнения:
СК/АС=СМ/АМ,
АС=СК·АМ/СМ=СК·(АС-СМ)/СМ=h(AC-d)/d,
d·АС=h·АС-dh,
AC(h-d)=dh,
AC=dh/(h-d)=5·7/(7-5)=17.5, Не похоже, что это меньший из катетов, ведь высота СК=7, а это намного меньше этого катета. Найдём второй катет.
АМ=АС-СМ=[dh/(h-d)]-d=d²/(h-d),
Опять, по т. биссектрис СМ/АМ=ВС/АВ,
АВ=АМ·ВС/СМ=d·BC/(h-d).
По теореме Пифагора АВ²=АС²+ВС²,
d²·BC²/(h-d)²=[d²h²/(h-d)²]+BC²,
(d²·BC²-BC²(h-d)²)/(h-d)²=d²h²/(h-d)²,
BC²=d²h²/(d²-(h-d)²),
ВС=dh/√(d²-(h-d)²)=5·7/√(5²-(7-5)²)≈7.6,
ВС<АС, значит ВС - меньший из катетов.
ответ: 7.6
Затем построить две окружности, у которых радиусы равны длине отрезка между пересечением первой окружности со сторонами угла и центрами которых являются данные точки пересечения окружности со сторонами (радиус изображён на фото оранжевым цветом).
Эти две окружности пересекутся в двух точках. Нужно соединить эти точки. Получится биссектриса PL угла P. Затем надо построить окружность с радиусом, равным длине данного в условии отрезку PQ в центре P. Данная окружность пересечёт биссектриса в точке Q.
Таким образом, точка Q, лежащая на биссектриса угла, удалена от вершины угла на расстояние PQ.