Основою піраміди є прямокутний трикутник із гострим кутом 60◦. Висота піраміди дорівнює 3см. Знайти об`єм піраміди, якщо кожне ребро утворює з площиною її основи кут 30◦.
Объяснение: Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.
Задание №2.
ответ: МР = КТ.
Объяснение: Данные отрезки равны, так как прямые а и b - параллельные и отрезки МР и КТ образуют углы в 90°.
Задание №3.
ответ: АВ - гипотенуза треугольника АВН и сторона треугольника АВС; АН - катет треугольника АВН и высота треугольника АВС; АС - гипотенуза треугольника АСН и сторона треугольника АВС.
Задание №4.
ответ: 1) Нет, расстояние от точки А до прямой ВС построено не верно. 2) Расстояние от точки В до АН равно 2 см.
Объяснение: 1) Верно будет провести отрезок от точки А до С, тогда это будет верное расстояние.
Задание №5.
ответ: Расстояние от М до АВ равно 10.
Объяснение: В прямоугольном треугольнике, если угол равен 45°, значит два угла будут по 45°, один естественно 90°.
Получается это прямоугольный равнобедренный треугольник, отсюда следует, что два катета равны. А расстояние от точки М до АВ будет длина стороны МВ.
Задание №6.
ответ: Расстояние от М до ВА равно 6.
Объяснение: Проведём отрезок от от точки В до М, получится прямоугольный треугольник АВМ. Найдём длину гипотенузы АМ, она будет равна диаметру окружности, который равен двум радиусам. d = 2*R; d = 2 * 6; d = 12. Теперь по теореме катет лежащий против угла 30° равен половине гипотенузы, вычисляем ВМ = АМ / 2; ВМ = 12 / 2 = 6.
Задание №7.
ответ: Расстояние между ВС и AD равно 4 см.
Объяснение: Проведём высоту ВН на отрезок AD, так как это и будет расстоянием между ВС и AD. Получается прямоугольный треугольник АВН с ∠А = 30°. Отсюда следует ВН = AB / 2; BH = 8 / 2 = 4 см.
Задание №8.
ответ: Расстояние между красной и синей 3,6 см; между желтой и синей 7,2 см.
Объяснение: Расстояние между красной и синей равно 3 клетки, так как 1 клетка равна 1,2 см, нужно 3 * 1,2 = 3,6 см. Это и будет искомым расстояние. Точно также и с желтой и синей, расстояние между ними равно 6 клеток, отсюда следует 6 * 1,2 = 7,2 см.
P.s. Надеюсь, что я правильно понял 8 задание и 1 клетка равна 1,2 см, иначе прощения
Из прямоугольного треугольника ВАН: sin ВАН = BH/AB = 5√3/10 = √3/2 Значит ∠ВАН = 60°. ∠ВСА = ∠ВАС = 60° как углы при основании равнобедренного треугольника. ∠АВС = 180° - 2·60° = 60°
ответ: все углы треугольника по Из прямоугольного треугольника АВН по теореме Пифагора: АН = √(АВ² - ВН²) = √(100 - 25·3) = √(100 - 75) = √25 = 5 см Катет АН равен половине гипотенузы АВ, значит ∠АВН = 30°. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой, тогда ∠АВС = 60°.
Задание №1.
ответ: Провести отрезок от точки М до точки К.
Объяснение: Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.
Задание №2.
ответ: МР = КТ.
Объяснение: Данные отрезки равны, так как прямые а и b - параллельные и отрезки МР и КТ образуют углы в 90°.
Задание №3.
ответ: АВ - гипотенуза треугольника АВН и сторона треугольника АВС; АН - катет треугольника АВН и высота треугольника АВС; АС - гипотенуза треугольника АСН и сторона треугольника АВС.
Задание №4.
ответ: 1) Нет, расстояние от точки А до прямой ВС построено не верно. 2) Расстояние от точки В до АН равно 2 см.
Объяснение: 1) Верно будет провести отрезок от точки А до С, тогда это будет верное расстояние.
Задание №5.
ответ: Расстояние от М до АВ равно 10.
Объяснение: В прямоугольном треугольнике, если угол равен 45°, значит два угла будут по 45°, один естественно 90°.
Получается это прямоугольный равнобедренный треугольник, отсюда следует, что два катета равны. А расстояние от точки М до АВ будет длина стороны МВ.
Задание №6.
ответ: Расстояние от М до ВА равно 6.
Объяснение: Проведём отрезок от от точки В до М, получится прямоугольный треугольник АВМ. Найдём длину гипотенузы АМ, она будет равна диаметру окружности, который равен двум радиусам. d = 2*R; d = 2 * 6; d = 12. Теперь по теореме катет лежащий против угла 30° равен половине гипотенузы, вычисляем ВМ = АМ / 2; ВМ = 12 / 2 = 6.
Задание №7.
ответ: Расстояние между ВС и AD равно 4 см.
Объяснение: Проведём высоту ВН на отрезок AD, так как это и будет расстоянием между ВС и AD. Получается прямоугольный треугольник АВН с ∠А = 30°. Отсюда следует ВН = AB / 2; BH = 8 / 2 = 4 см.
Задание №8.
ответ: Расстояние между красной и синей 3,6 см; между желтой и синей 7,2 см.
Объяснение: Расстояние между красной и синей равно 3 клетки, так как 1 клетка равна 1,2 см, нужно 3 * 1,2 = 3,6 см. Это и будет искомым расстояние. Точно также и с желтой и синей, расстояние между ними равно 6 клеток, отсюда следует 6 * 1,2 = 7,2 см.
P.s. Надеюсь, что я правильно понял 8 задание и 1 клетка равна 1,2 см, иначе прощения
sin ВАН = BH/AB = 5√3/10 = √3/2
Значит ∠ВАН = 60°.
∠ВСА = ∠ВАС = 60° как углы при основании равнобедренного треугольника.
∠АВС = 180° - 2·60° = 60°
ответ: все углы треугольника по Из прямоугольного треугольника АВН по теореме Пифагора:
АН = √(АВ² - ВН²) = √(100 - 25·3) = √(100 - 75) = √25 = 5 см
Катет АН равен половине гипотенузы АВ, значит ∠АВН = 30°.
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой, тогда ∠АВС = 60°.
∠ВАС = ∠ВСА = (180° - 60°)/2 = 60°
ответ: все углы треугольника по 60°.