Первый признак равенства треугольников: Если 2 стороны и угол между ними одного треугольника равны соответственно 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Следующее задание некорректное.
2. Дано:
Просто перепишите условие
Доказать: треугольники (далее - т.) ABC=PQR
Доказательство:
Т. ABC=PQR по 1 признаку равенства треугольников, так как AC=PQ, углы (далее - у.) C=Q, у. B=R, что и требовалось доказать.
Далее прикреплён чертёж к задаче. К сожалению, отметить равные элементы у меня нет возможности, поэтому отметьте сами(
см. объяснение
Объяснение:
Первый признак равенства треугольников: Если 2 стороны и угол между ними одного треугольника равны соответственно 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Следующее задание некорректное.
2. Дано:
Просто перепишите условие
Доказать: треугольники (далее - т.) ABC=PQR
Доказательство:
Т. ABC=PQR по 1 признаку равенства треугольников, так как AC=PQ, углы (далее - у.) C=Q, у. B=R, что и требовалось доказать.
Далее прикреплён чертёж к задаче. К сожалению, отметить равные элементы у меня нет возможности, поэтому отметьте сами(
P.S. вывод: учите геометрию
1) Дано: АВ ┴ CD, ∟СОК = 42 °, ∟МОК + ∟ВОК = 130 °.
Найти: ∟МОК.
АВ ┴ CD, ∟COB = 90 °, ∟AOC = 90 °.
По аксиомой измерения углов имеем:
∟СОВ = ∟СОК + ∟КОВ, ∟КОВ = ∟СОВ - ∟СОК, ∟КОВ = 90 ° - 42 ° = 48 °.
∟МОК + ∟ВОК = 130 °, ∟МОК = 130 ° - 48 ° = 82 °,
2): ∟MOD.
По условию АВ ┴ CD, тогда ∟АОС = ∟СОВ = 90 °, ∟AOD = 90 °. ∟AOB = 180 °.
По аксиомой измерения углов имеем:
∟МОК + ∟ВОК = ∟MOB - 130 °. ∟АОВ = ∟AOM + ∟MOB, ∟AOM = ∟АОВ - ∟MOB,
∟АОМ = 180 ° - 130 ° = 50 °. ∟MOD = ∟МОА + ∟AOD, ∟MOD = 90 ° 50 ° = 140 °.
Biдповидь: ∟МОК = 82 °, ∟MOD = 140 °.
Объяснение: