ОТ На рис.34 изображен Шекспировский театр "Глобус" в Лондоне. Определите расстояние от актера, находящегося внизу театра, до верхней зрительской ложи.
Диагональ делит трапецию на два треугольника с основаниями ВС и АД, длина которых вдвое больше средней линии каждого треугольника. Тогда ВС=4 см, АД=10 см. Проведем СР||АВ Противоположные стороны четырехугольника АВСР параллельны. АВСР - параллелограмм, ВС=АР=4 см, и СР=АВ=6 см РД=АД-АР=10-4=6 см Все стороны треугольника РСД равны. Треугольник РСД - равносторонний. Все углы равностороннего треугольника равны 60°. ∠ ВСР=∠ВАР=60° ∠ВСД=СВА=60°+60°=120° Углы при каждом из оснований равнобедренной трапеции равны. Острые углы данной трапеции равны 60°, тупые - 120°.
В 1-м прямая не может пересекать под углом 370°, потому что 360° - это круг
Во 2-м может быть определить углы не по углам, а по сторонам?
Задание 4 вам нужно сделать самостоятельно, просто начертить отрезки данной длины и сформировать треугольник
Объяснение: задание 3
Периметр треугольника- это сумма всех сторон. Поскольку нам не известна длина боковой стороны, тогда мы обозначим её "х". Так как в ∆АВС равнобедренный, то его боковые стороны равны. Составляем уравнение:
х+х+12=30
2х+12=30
2х=30-12
2х=18
х=18÷2
х=9; боковая сторона треугольника АВС=9
ЗАДАНИЕ 5
Рассмотрим ∆АОВ и ∆ВОС. У них:
АВ=ВС, по условиям так как ∆АВС равнобедренный
Сторона ВО - общая
АО= ОС, так как они равноудалены друг от друга и соединяются в одной точке
Угол АВО= углу СВО, так как по условиям из вершины В проведена медиана, которая в равнобедренном треугольнике является биссектрисой и делит угол В пополам.
Треугольники равны по 3- м сторонам и углу.
Задание 6
По свойствам угла 30°, если катет лежит против этого угла, то катет равен половине гипотенузы. Катет АС = половине гипотенузы АВ, из чего делаю заключение, что напротив этого катета расположен угол 30°; угол В =30°. Теперь найдём угол А:
180-90-30=60°. Итак: угол В=30°; угол А=60°
Задание 7
В равнобедренном треугольнике боковые стороны и углы равны - угол А= углуВ, АВ =ВС, также медиана в равнобедренном треугольнике является ещё и биссектрисой, поэтому она разделяет сторону треугольника и угол из которого проведена - пополам АМ=МС, угол АБМ= углуСВМ, и является ещё и высотой, поэтому, разделяя сторону треугольника пополам, она ещё образует в каждом треугольнике прямой угол - угол АМВ= углу СМВ, также сама медиана является общей стороной этих треугольников.
∆АВМ=∆СВМ по трём углам и трём сторонам.
Задание 8
Площадь круга вычисляется по формуле S= πr^; π×4^=3,14×16 =50,24- это площадь круга с радиусом 4 см
S=π× 8^=3,14×64=200,96; это площадь круга с радиусом 8.
Теперь узнаем во сколько раз площадь одного круга больше другого: 200,96÷50,24= 4
ответ: площадь одного круга больше другого в 4 раза
Проведем СР||АВ
Противоположные стороны четырехугольника АВСР параллельны.
АВСР - параллелограмм, ВС=АР=4 см, и СР=АВ=6 см
РД=АД-АР=10-4=6 см
Все стороны треугольника РСД равны.
Треугольник РСД - равносторонний.
Все углы равностороннего треугольника равны 60°.
∠ ВСР=∠ВАР=60°
∠ВСД=СВА=60°+60°=120°
Углы при каждом из оснований равнобедренной трапеции равны.
Острые углы данной трапеции равны 60°, тупые - 120°.
В 1-м прямая не может пересекать под углом 370°, потому что 360° - это круг
Во 2-м может быть определить углы не по углам, а по сторонам?
Задание 4 вам нужно сделать самостоятельно, просто начертить отрезки данной длины и сформировать треугольник
Объяснение: задание 3
Периметр треугольника- это сумма всех сторон. Поскольку нам не известна длина боковой стороны, тогда мы обозначим её "х". Так как в ∆АВС равнобедренный, то его боковые стороны равны. Составляем уравнение:
х+х+12=30
2х+12=30
2х=30-12
2х=18
х=18÷2
х=9; боковая сторона треугольника АВС=9
ЗАДАНИЕ 5
Рассмотрим ∆АОВ и ∆ВОС. У них:
АВ=ВС, по условиям так как ∆АВС равнобедренный
Сторона ВО - общая
АО= ОС, так как они равноудалены друг от друга и соединяются в одной точке
Угол АВО= углу СВО, так как по условиям из вершины В проведена медиана, которая в равнобедренном треугольнике является биссектрисой и делит угол В пополам.
Треугольники равны по 3- м сторонам и углу.
Задание 6
По свойствам угла 30°, если катет лежит против этого угла, то катет равен половине гипотенузы. Катет АС = половине гипотенузы АВ, из чего делаю заключение, что напротив этого катета расположен угол 30°; угол В =30°. Теперь найдём угол А:
180-90-30=60°. Итак: угол В=30°; угол А=60°
Задание 7
В равнобедренном треугольнике боковые стороны и углы равны - угол А= углуВ, АВ =ВС, также медиана в равнобедренном треугольнике является ещё и биссектрисой, поэтому она разделяет сторону треугольника и угол из которого проведена - пополам АМ=МС, угол АБМ= углуСВМ, и является ещё и высотой, поэтому, разделяя сторону треугольника пополам, она ещё образует в каждом треугольнике прямой угол - угол АМВ= углу СМВ, также сама медиана является общей стороной этих треугольников.
∆АВМ=∆СВМ по трём углам и трём сторонам.
Задание 8
Площадь круга вычисляется по формуле S= πr^; π×4^=3,14×16 =50,24- это площадь круга с радиусом 4 см
S=π× 8^=3,14×64=200,96; это площадь круга с радиусом 8.
Теперь узнаем во сколько раз площадь одного круга больше другого: 200,96÷50,24= 4
ответ: площадь одного круга больше другого в 4 раза
Фото с рисунком ниже