Дано : тр. АВС - прямоугольный ∠С= 90° АВ - гипотенуза ВС, АС - катеты
Решение задачи по теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов. АВ² = ВС² + АС² Треугольник существует если сумма двух любых сторон треугольника больше, чем его третья сторона .
1 вариант. ВС= 3 м , АС = 4 м АВ² = 3² + 4² = 9+16 = 25 ⇒ АВ = 5 м Имеет ли право такой треугольник на существование: ВС + АС > АВ 3+4> 5 ; 7>5 ВС + АВ > AC 3+5 >4 ; 8>4 АС + АВ > BC 4 +5 > 3 ; 9>3 Треугольник со сторонами АВ=5 м, ВС= 3м , АС=4м существует. ответ: АВ= 5 м
2 вариант. АВ=3 м , ВС= 4 м ; АС - ? 3² = 4² + АС² АС²= 9 - 16 = - 7 не удовлетворяет условию задачи, т.к. сторона в квадрате не м.быть отрицательной величиной
3 вариант: АВ=4 м , ВС=3 м , АС - ? 4² = 3³ + АС² АС²= 16 - 9 = 7 ⇒ АС = √7 м (≈2.65 м) ВС+АС >АВ 3 +√ 7 > 4 ВС + АВ > AC 3 + 4 > √ 7 AC + AB > BC √7 + 4 > 3 Треугольник со сторонами АС = √7 м , АВ=4 м , ВС=3 м существует. ответ: АС=√7 м.
Окружность = 360° 1) 5+4 =9 столько частей в этих 360° Меньшая дуга 360:9*4=40°*4=160° Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ). Вписанный угол АСВ равен половине центрального угла. 160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен 360°:9*5:2=100°. Но обычно имеется в виду острый угол. ------------ 2) 7+3=10 столько частей в двух дугах. 360°:10*3=108° содержит центральный угол КОМ ( второй рисунок) Вписанный угол МЕК равен половине градусной меры центрального угла. 108°:2=54° - под этим углом видна вторая хорда. (Или, если точка расположена по другую сторону хорды, 360:10*7:2=126°)
тр. АВС - прямоугольный
∠С= 90°
АВ - гипотенуза
ВС, АС - катеты
Решение задачи по теореме Пифагора:
квадрат гипотенузы равен сумме квадратов катетов.
АВ² = ВС² + АС²
Треугольник существует если сумма двух любых сторон треугольника больше, чем его третья сторона .
1 вариант.
ВС= 3 м , АС = 4 м
АВ² = 3² + 4² = 9+16 = 25 ⇒ АВ = 5 м
Имеет ли право такой треугольник на существование:
ВС + АС > АВ 3+4> 5 ; 7>5
ВС + АВ > AC 3+5 >4 ; 8>4
АС + АВ > BC 4 +5 > 3 ; 9>3
Треугольник со сторонами АВ=5 м, ВС= 3м , АС=4м существует.
ответ: АВ= 5 м
2 вариант.
АВ=3 м , ВС= 4 м ; АС - ?
3² = 4² + АС²
АС²= 9 - 16 = - 7 не удовлетворяет условию задачи, т.к. сторона в квадрате не м.быть отрицательной величиной
3 вариант:
АВ=4 м , ВС=3 м , АС - ?
4² = 3³ + АС²
АС²= 16 - 9 = 7 ⇒ АС = √7 м (≈2.65 м)
ВС+АС >АВ 3 +√ 7 > 4
ВС + АВ > AC 3 + 4 > √ 7
AC + AB > BC √7 + 4 > 3
Треугольник со сторонами АС = √7 м , АВ=4 м , ВС=3 м существует.
ответ: АС=√7 м.
1) 5+4 =9 столько частей в этих 360°
Меньшая дуга 360:9*4=40°*4=160°
Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ).
Вписанный угол АСВ равен половине центрального угла.
160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ
Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен
360°:9*5:2=100°. Но обычно имеется в виду острый угол.
------------
2) 7+3=10 столько частей в двух дугах.
360°:10*3=108° содержит центральный угол КОМ ( второй рисунок)
Вписанный угол МЕК равен половине градусной меры центрального угла.
108°:2=54° - под этим углом видна вторая хорда.
(Или, если точка расположена по другую сторону хорды,
360:10*7:2=126°)