1)24-6=18 см = а + в, отсюда в=18-а=АВ медиана в равнобедренном треугольнике является и высотой ,значит треугольник АВД-прямоугольный следует ,что АВ=в= 18-а является гипотенузой АВД, АД=а -Ккатет АД исходя из свойств гипотенузы и катета,получаем,что 2 2 2 (18- а) - а = 6 раскроем скобки 2 2 324- 36 а + а - а =36
квадраты а сокращаются остается 324-36 а=36 отсюда убираем минусы так как с обоих сторон остается 36 а= 324-36 36а= 288 а=288 : 36 а= 8 см 18- 8 =10 см= АВ=ВС АС= 8+8=16 так как медиана делит пополам периметр АВС=10+10+16=36 см
В пространстве существуют точки, что принадлежат данной плоскости и точки, что ей не принадлежат.(аксиома) Пусть точка А - точка, которая не принадлежит плоскости альфа (а значит не принадлежит и пряммой а) Через пряммую а и точку, что не лежит на пряммой можно провести плоскость. Проводим такую плоскость Бэта. Пряммая а принадлежит обоим плоскостям Альфа и Бэта, но эти плоскости разные , так как точка А плоскости Бэта не принадлежит плоскости Альфа. Таким образом мы доказали требуемое утверждение
медиана в равнобедренном треугольнике является и высотой ,значит треугольник АВД-прямоугольный
следует ,что АВ=в= 18-а является гипотенузой АВД, АД=а -Ккатет АД
исходя из свойств гипотенузы и катета,получаем,что
2 2 2
(18- а) - а = 6
раскроем скобки
2 2
324- 36 а + а - а =36
квадраты а сокращаются
остается 324-36 а=36
отсюда убираем минусы так как с обоих сторон
остается 36 а= 324-36
36а= 288
а=288 : 36
а= 8 см
18- 8 =10 см= АВ=ВС
АС= 8+8=16 так как медиана делит пополам
периметр АВС=10+10+16=36 см