Отрезки ab и cd пересекаются в точке o, причем oa=od. на отрезке ad отмечена точка p,так что cop=bop. докажите, что точка пересечения медиан треугольника aod принадлежит отрезку op.
Углы BOD=COA так как они вертикальные⇒угол AOP= углуDOP так как BOP=COP по условию. В треугольнике AOD OP является биссектрисой так как DOP=AOP Треугольник AOD равнобедренный так как AO=OD Биссектриса опущенная к основанию в равнобедренном треугольнике является так же и медианой. Так как OP медиана то следует что точка пересечения медиан лежит на этом отрезке.
Биссектриса опущенная к основанию в равнобедренном треугольнике является так же и медианой. Так как OP медиана то следует что точка пересечения медиан лежит на этом отрезке.