Биссектриса треугольника делит его противоположную сторону на части, пропорциональные прилегающим сторонам.
По условию, биссектриса острого угла прямоугольного треугольника делит катет на отрезки длиной 8 см и 17 см. Значит, один катет равен 8+17=25 см, другой катет равен 8k см, а гипотенуза равна 17k см (k-коэффициент пропорциональности).
По теореме Пифагора можно составить уравнение:
(17k)²= 25²+(8k)²
289k²=625+64k²
289k²-64k²=625
225k²=625
k²=625/225
k²=25/9
k=5/3
Катет прямоугольного треугольника равен 8*5/3 = 40/3 см
Площадь прямоугольного треугольника равна половине произведения его катетов, т.е.
BC:AC:AB=2:6:7 ВС=2х, АС=6х, АВ=7х
AB=BC+25 (см) Так как: АВ=ВС+25
7х = 2х+25
Найти: Р=? 5х = 25
х = 5
ВС=2х=10 (см), АС=6х=30(см), АВ=7х=35 (см)
Р = 10+30+35 = 75 (см)
ответ: 75 см
166 ²/₃ см²
Биссектриса треугольника делит его противоположную сторону на части, пропорциональные прилегающим сторонам.
По условию, биссектриса острого угла прямоугольного треугольника делит катет на отрезки длиной 8 см и 17 см. Значит, один катет равен 8+17=25 см, другой катет равен 8k см, а гипотенуза равна 17k см (k-коэффициент пропорциональности).
По теореме Пифагора можно составить уравнение:
(17k)²= 25²+(8k)²
289k²=625+64k²
289k²-64k²=625
225k²=625
k²=625/225
k²=25/9
k=5/3
Катет прямоугольного треугольника равен 8*5/3 = 40/3 см
Площадь прямоугольного треугольника равна половине произведения его катетов, т.е.
S = 1/2*25*40/3 =25*20/3 = 500/3 = 166 ²/₃ (см²)