Отрезки АД и ВС пересекаются в точке О, являющейся серединой каждого из них. Докажите, что треугольник АОВ равен треугольнику ДОС. Найдите сторону СД и угол ОВА, если угол ОСД равен 50°,а отрезок АВ равен 10 см
Проверим, лежит ли точка А(5,-3) на какой-либо заданной высоте. Подставим координаты этой точки в уравнения высот. Если равенство получим верное, то точка лежит на прямой.
Точка А(5,-3) не лежит ни на одной высоте. Для определённости, пусть высота BN имеет уравнение 2х-у-1=0, а высота СМ: 13х+4у-7=0.
BN⊥AC ⇒ направляющий вектор для АС равен нормальному вектору для BN: .
Точка А(5,-3)∈АС и уравнение АС имеет вид:
CM⊥AB ⇒ направляющий вектор для АВ равен нормальному вектору для CМ: .
Точка А(5,-3)∈АВ и уравнение АВ имеет вид:
Координаты точки В найдём как точку пересечения АВ и BN, а координаты точки С найдём как точку пересечения АС и CM .
Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см
Объяснение:
АВСМ- описанная трапеция⇒ суммы длин противоположных сторон равны. Т.е 6+12=АВ+СМ⇒ АВ=СМ=9 см. Пусть ВК⊥АМ , СР⊥АМ.
S(круга)=πr². Радиус вписанной в трапецию окружности будет равен половине высоты трапеции.
Т.к. ВК⊥АМ , СР⊥АМ, то КВСР-прямоугольник ⇒
КР=6 см, АК=РМ=(12-6) :2=3 (см).
ΔАВК-прямоугольный, по т. Пифагора :
ВК=√(9²-3²)=√((9-3)(9+3))=√(6*12)=6√2(см).
ВК-высота трапеции, значит r=3√2 см.
S(круга)= π (3√2 )²=18π (см²).
Подробнее - на -
Проверим, лежит ли точка А(5,-3) на какой-либо заданной высоте. Подставим координаты этой точки в уравнения высот. Если равенство получим верное, то точка лежит на прямой.
Точка А(5,-3) не лежит ни на одной высоте. Для определённости, пусть высота BN имеет уравнение 2х-у-1=0, а высота СМ: 13х+4у-7=0.
BN⊥AC ⇒ направляющий вектор для АС равен нормальному вектору для BN: .
Точка А(5,-3)∈АС и уравнение АС имеет вид:
CM⊥AB ⇒ направляющий вектор для АВ равен нормальному вектору для CМ: .
Точка А(5,-3)∈АВ и уравнение АВ имеет вид:
Координаты точки В найдём как точку пересечения АВ и BN, а координаты точки С найдём как точку пересечения АС и CM .