Отрезки АВ и CD являются хордами окружности. Найдите длину хорды CD, если AB = 24, а расстояние от центра окружности до хорд AB и CD равны соответственно 16 и 12.
5.* Высота, проведенная к основанию равнобедренного треугольника, равна 12 см, а само основание равно 18 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.
Окружность разделена точками А,В,С и D на отрезки (дуги) с градусной величиной 60°, 80°, 100° и 120° , то есть дуга АВ = 60°, ВС = 80°, CD = 100° и DA=120°. (так как 3+4+5+6=18, 360°/18=20°, ну и 20*3=60° и так далее...)
Углы, вписанные в окружность, опирающиеся на соответствующие дуги, равны половине их градусной величины.
Значит угол ВСD = (BA+AD)/2 = 180°/2=90°
угол АВС = (AD+DC)/2 = 220°/2=110°. Тогда угол МСВ = 90°(как смежный с 90°) а угол МВС = 70° (как смежный с 110°) (точка М - точка пересечения прямых АВ и CD) Тогда искомый угол ВМС = 180°-90°-70° =20°. (так как в треугольнике сумма углов = 180°)
ответ 20°
OC ⊥ BM ( OC ⊥ BC ,где O центр малой окружности , BC касательная) ⇒ AM | | OC . MC/CB= AO/OB (обобщенная теорема Фалеса) .
2,4 /4 =r/(2R -r) ⇔ r=3R/4 (1) .
Из ΔBCO по теореме Пифагора :
OB² - OC² =BC² ;
(2R -r)² - r² = 4² ⇔ 4R(R-r) =16 ⇔ R(R-r) =4 (2).
R(R -3R/4) =4 ⇒ R =4. ⇒ r=3R/4 = 3.
AD =AC+CD.
AM =√(AB² -BM²) =√((2R)² -(MC+CB)² ) =√(8² -6,4²) =√(8 -6,4)(8 +6,4) =4,8.
AM можно вычислить по другому: AM/OC =MB/CB ⇔ AM/3 =6,4/4⇒
AM =4,8.
---
AC =√(BC² +AM²) =√(2,4² +4,8²) =√(2,4² +(2*2,4)²) = 2,4√5.
AC*CD = MC*BC ⇔ 2,4√5 *CD =2,4*4⇒ CD =4/√5 =4√5 / 5 =0,8√5.
AD =AC+CD= 2,4√5 + 0,8√5 =3,2√5 .