Отрезки cm,cl – соответственно медиана и биссектриса треугольника abc, точка s на стороне ab такова, что ∠mcl=∠lcs (точка l лежит между m и s). найдите bs, если ab=28,bl=12. если ответ является дробным числом, то его необходимо записать в виде десятичной дроби с запятой, например, «0,15»
SABCD - правильная четырехугольная пирамида
SO - высота = 10
АВ - сторона основания = 12
_____________________
Найти:
Площадь диагонального сечения
Решение:
SABCD - правильная пирамида, в основании которой лежит квадрат.
Диагональное сечение представляет собой равнобедренный треугольник SAC
Площадь равнобедренного треугольника находится по формуле
(произведение половины основания треугольника на его высоту):
SO - высота
AC - основание равнобедренного треугольника ASC
Основанием нашего треугольника является диагональ квадрата ABCD, которую находим по теореме Пифагора:
Тогда площадь равнобедренного треугольника ASC, которое и есть площадь сечения данной пирамиды, будет равно:
ответ: кв.ед.
R = 3\sqrt{2}3
2
м
S = 36 м2
Объяснение:
R - радиус описанной вокруг квадрата окружности. По свойству радиуса описанной около квадрата окружности, радиус равен половине диагонали квадрата.
Рассмотрим ΔHEF: < HEF = 90^{0}90
0
, HE = 6 м = EF. По теореме Пифагора найдем гипотенузу HF:
\begin{gathered}HF^{2} = HE^{2} + EF^{2} = 6^{2} + 6^{2} = 36 + 36 = 72\\HF = \sqrt{72} = \sqrt{2*36} = 6\sqrt{2}\end{gathered}
HF
2
=HE
2
+EF
2
=6
2
+6
2
=36+36=72
HF=
72
=
2∗36
=6
2
HF также является диагональю квадрата, тогда R = HF : 2 = 6\sqrt{2} : 2 = 3\sqrt{2}6
2
:2=3
2
Площадь квадрата равна квадрату его стороны, то есть нужно возвести сторону квадрата во вторую степень:
S_{HEFG} = 6^{2} = 36.S
HEFG
=6
2
=36.