Отрезки mb и mc- перпендикулярны, проведенные из точки m основания bc равнобедренного треугольника abc к прямым ac и ab, отрезок bh-высота этого треугольника. докажите, что mb + mc=bh
Рассмотрим параллелограмм ABCD, в котором диагональ AC соединяет вершины A и C: так как основания параллелограмма параллельны, то углы 1 и 2 равны как накрест лежащие углы. Рассмотрим треугольники асб и адс, они равны по первому признаку подобия треугольников ( две стороны и угол между ними), так как диагональ АС - общая сторона для этих двух треугольников, а стороны сб и да равны как противоположные стороны параллелограмма. Отсюда следует что диагональ делит параллелограмм на два равных треугольника. Сейчас добавлю чертеж
1)Дано:тр.АВС,угол С=90 гр,СД-высота,угол АСД=4угламДСВ.
Найти:угол А,угол В.
Решение:
1)пусть угол ДСВ=х гр,тогда угол АСД=4х гр.
х+4х=90
5х=90
х=18
Значит,угол ДСВ=18 гр,угол АСД=72 гр.
2)угол А=90-72=18(гр);угол В=90-18=72(гр).
2)
треугольник АМВ прямоугольный,угол М=90градуссов,угол МВА=30 градуссов,АМ=половине АВ,так как катет лежит против угла в 30 градуссов,АМ=9 см
По теореме Пифагора можем найти ВМ,АВ в квадрате= АМ в квадрате +ВМ в квадрате
ВМ= корень квадратный из АВ в квадрате минус Ам в квадрате
ВМ=9 корней из 3 см