Расстояние от крыши дома до зёрен и от фонаря до зерен представляет собой гипотенузы прямоугольных треугольников АВС и КМС, как показано на рисунке. Если голуби при одинаковой скорости подлетели к корму одновременно, значит, эти гипотенузы равны, ВС=СК.
АВ - стена дома, МК - фонарь. АВ=12 м, МК=9 м.
Пусть искомое расстояние от дома до зерен АС=х м, тогда расстояние от основания столба до зерен СМ=21-х м.
На рисунке АВ:АD = АС:АЕ = ВС:ЕD. Это означает, что ΔАВС подобен ΔADE и ∠АВС = ∠ADE; ∠ВСА = ∠AED.
Объяснение:
1. 2-й признак подобия: "Два треугольника подобны, если две стороны одного треугольника пропорциональны двум сторонам другого, и углы, лежащие между ними, равны".
В нашем случае АВ/AD = АС/АЕ и ∠А - общий. Значит
ΔАВС ~ ΔADE, => ∠ABC = ∠ADE, ∠BCA = ∠AED как углы, заключенные между соответственными сторонами.
2. 3-й признак подобия: "Два треугольника подобны, если три стороны одного треугольника пропорциональны трем сторонам другого".
В нашем случае AB/AD=AC/AE = BC/ED, значит
ΔАВС ~ ΔADE, => ∠ABC = ∠ADE, ∠BCA = ∠AED как углы, заключенные между соответственными сторонами.
9 м.
Объяснение:
Расстояние от крыши дома до зёрен и от фонаря до зерен представляет собой гипотенузы прямоугольных треугольников АВС и КМС, как показано на рисунке. Если голуби при одинаковой скорости подлетели к корму одновременно, значит, эти гипотенузы равны, ВС=СК.
АВ - стена дома, МК - фонарь. АВ=12 м, МК=9 м.
Пусть искомое расстояние от дома до зерен АС=х м, тогда расстояние от основания столба до зерен СМ=21-х м.
По теореме Пифагора имеем равенство
ВС²=12²+х², а СК²=9²+(21-х)²
Поскольку ВС=СК, равенство принимает вид
12²+х²=9²+(21-х)²
144+х²=81+441-42х+х²
42х=378
х=9.
Расстояние от дома до зёрен 9 м.
На рисунке АВ:АD = АС:АЕ = ВС:ЕD. Это означает, что ΔАВС подобен ΔADE и ∠АВС = ∠ADE; ∠ВСА = ∠AED.
Объяснение:
1. 2-й признак подобия: "Два треугольника подобны, если две стороны одного треугольника пропорциональны двум сторонам другого, и углы, лежащие между ними, равны".
В нашем случае АВ/AD = АС/АЕ и ∠А - общий. Значит
ΔАВС ~ ΔADE, => ∠ABC = ∠ADE, ∠BCA = ∠AED как углы, заключенные между соответственными сторонами.
2. 3-й признак подобия: "Два треугольника подобны, если три стороны одного треугольника пропорциональны трем сторонам другого".
В нашем случае AB/AD=AC/AE = BC/ED, значит
ΔАВС ~ ΔADE, => ∠ABC = ∠ADE, ∠BCA = ∠AED как углы, заключенные между соответственными сторонами.