ответ: 4) 288.
Решение.
Пусть ABC - треугольник, и угол B - ппрямой.
Пусть BК - высота, проведенная из вершины прямого угла B,
BМ - бисектриса, проведенная из угла B, при этом на стороне АС.
BК = 6, ВМ = 8.
точки находятся в таком порядке: A, К, М, C.
Начертите такой треугольник, чтобы было понятнее.
Угол АВМ = угол МВС = 45 гр = pi/4.
Обозначим угол КВМ = alfa.
cos(alfa) = ВК/ВМ = 6/8 = 3/4.
sin(alfa) = V(1 - 9/16) = V((16 - 9)/16) = V(7)/4 (V - корень квдратный) .
В треугольнике АВК угол АВК = угол АВМ - alfa = pi/4 - alfa.
АВ = ВК/cos(pi/4 - alfa) = 6/cos(pi/4 - alfa).
В треугольнике КВС угол КВС = угол МВС + alfa = pi/4 + alfa.
ВС = ВК/cos(pi/4 + alfa) = 6/cos(pi/4 + alfa).
Площадь треугольника АВС:
S = (1/2)*АВ*ВС = (1/2)*6*6/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ) = 18/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ).
cos(pi/4 - alfa) = cos(pi/4)*cos(alfa) + sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) + (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 + V(7)/4
cos(pi/4 + alfa) = cos(pi/4)*cos(alfa) - sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) - (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 - V(7)/4
Поэтоиу
S = 18*4*4/( (V(2)/2)*(3 + V(7)* (V(2)/2)*(3 - V(7) ) = 18*16*2/(3^2 - V(7)^2) = 18*16*2/(9 - 7) = 18*16 = 288.
Объяснение:
Наклонная равна 20см. чему равна проекция этой наклонной на плоскость, если
наклонная составляет с плоскостью угол 45 градусов.
L=20 cм, l = 20*cos45 = 20*√2/2 = 10√2 см
Точка А отстоит от плоскости на расстоянии 26 см. Найдите длину наклонной, которая составляет с плоскостью угол 30 градусов .
H=26 см, L=H/sin30 = 2H = 52 см
Дан куб ABCDA1B1C1D1,
1) Выпишите грани, параллельные ребру AA1 - не считая граней в которых лежит АА1, BB1C1C и СС1D1D
2) выпишите рёбра, скрещивающиеся с ребром ВС - А1В1, С1D1
3) выпишите рёбра, перпендикулярные плоскости (ABB1) - BC,B1C1,AD,A1D1
4) выпишите плоскости, перпендикулярные ребру AD - ABB1A1, CDD1C1
Радиусы оснований усечённого конуса равны Здм и 7дм. Образующая - 5дм. Найдите площадь осевого сечения.
Осевое сечение - трапеция с основаниями 6дм и 14 дм, и боковой стороной 5дм
S = h*(6+14)/2 = 10h.
Высоту найдем по теореме Пифагора h^2=5^2-((14-6)/2)^2 = 25-16 = 9, h=3 дм
S = 10*3 = 30 дм^2
Шар пересечён плоскостью на расстоянии Зсм от центра. Найдите площадь сечения, если радиус шара равен 5см.
Радиус сечения найдем из треугольника r^2 = R^2 - h^2 = 5^2-3^2 = 25-9 = 16
r = 4 см. S = пr^2 = 16п см^2
Измерения прямоугольного параллелепипеда равны 8см, 12см, 18см. найдите ребро куба, объём которого равен объёму этого параллелепипеда.
V = abc = 8*12*18 = 1728 см^3
Vкуба = а^3 = 1728, a = 4 ∛18 см
ответ: 4) 288.
Решение.
Пусть ABC - треугольник, и угол B - ппрямой.
Пусть BК - высота, проведенная из вершины прямого угла B,
BМ - бисектриса, проведенная из угла B, при этом на стороне АС.
BК = 6, ВМ = 8.
точки находятся в таком порядке: A, К, М, C.
Начертите такой треугольник, чтобы было понятнее.
Угол АВМ = угол МВС = 45 гр = pi/4.
Обозначим угол КВМ = alfa.
cos(alfa) = ВК/ВМ = 6/8 = 3/4.
sin(alfa) = V(1 - 9/16) = V((16 - 9)/16) = V(7)/4 (V - корень квдратный) .
В треугольнике АВК угол АВК = угол АВМ - alfa = pi/4 - alfa.
АВ = ВК/cos(pi/4 - alfa) = 6/cos(pi/4 - alfa).
В треугольнике КВС угол КВС = угол МВС + alfa = pi/4 + alfa.
ВС = ВК/cos(pi/4 + alfa) = 6/cos(pi/4 + alfa).
Площадь треугольника АВС:
S = (1/2)*АВ*ВС = (1/2)*6*6/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ) = 18/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ).
cos(pi/4 - alfa) = cos(pi/4)*cos(alfa) + sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) + (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 + V(7)/4
cos(pi/4 + alfa) = cos(pi/4)*cos(alfa) - sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) - (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 - V(7)/4
Поэтоиу
S = 18*4*4/( (V(2)/2)*(3 + V(7)* (V(2)/2)*(3 - V(7) ) = 18*16*2/(3^2 - V(7)^2) = 18*16*2/(9 - 7) = 18*16 = 288.
Объяснение:
Наклонная равна 20см. чему равна проекция этой наклонной на плоскость, если
наклонная составляет с плоскостью угол 45 градусов.
L=20 cм, l = 20*cos45 = 20*√2/2 = 10√2 см
Точка А отстоит от плоскости на расстоянии 26 см. Найдите длину наклонной, которая составляет с плоскостью угол 30 градусов .
H=26 см, L=H/sin30 = 2H = 52 см
Дан куб ABCDA1B1C1D1,
1) Выпишите грани, параллельные ребру AA1 - не считая граней в которых лежит АА1, BB1C1C и СС1D1D
2) выпишите рёбра, скрещивающиеся с ребром ВС - А1В1, С1D1
3) выпишите рёбра, перпендикулярные плоскости (ABB1) - BC,B1C1,AD,A1D1
4) выпишите плоскости, перпендикулярные ребру AD - ABB1A1, CDD1C1
Радиусы оснований усечённого конуса равны Здм и 7дм. Образующая - 5дм. Найдите площадь осевого сечения.
Осевое сечение - трапеция с основаниями 6дм и 14 дм, и боковой стороной 5дм
S = h*(6+14)/2 = 10h.
Высоту найдем по теореме Пифагора h^2=5^2-((14-6)/2)^2 = 25-16 = 9, h=3 дм
S = 10*3 = 30 дм^2
Шар пересечён плоскостью на расстоянии Зсм от центра. Найдите площадь сечения, если радиус шара равен 5см.
Радиус сечения найдем из треугольника r^2 = R^2 - h^2 = 5^2-3^2 = 25-9 = 16
r = 4 см. S = пr^2 = 16п см^2
Измерения прямоугольного параллелепипеда равны 8см, 12см, 18см. найдите ребро куба, объём которого равен объёму этого параллелепипеда.
V = abc = 8*12*18 = 1728 см^3
Vкуба = а^3 = 1728, a = 4 ∛18 см