В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
TheKateClapp123
TheKateClapp123
02.07.2020 00:31 •  Геометрия

Отрезок ka - перпендикуляр к плоскости правильного треугольника abc. найдите расстояние между прямыми bc и ka, если периметр треугольника равен 24 см

Показать ответ
Ответ:
ArinaKosareva63
ArinaKosareva63
23.05.2020 23:37

Дан треуг. АВС. Из точки К, не принадлежащей плоскости (АВС) проводим перпендикуляр КА. Получили пирамиду, в основании которой лежит правильный треуг. АВС. Так как периметр равен 24см, то стороны равны 24/3=8см.

Прямые КА и ВС скрещивающиеся, расстояние между ними равно длине их общего перпендикуляра. Поэтому из точки А проводим перпендикуляр АН к стороне ВС, он же и медиана. СН=НВ=8/2=4см.

По теореме Пифагора  АН=√(AB^2-HB^2)=√(64-16)=√48=4√3см

ответ: 4√3см

0,0(0 оценок)
Ответ:
nikita1197
nikita1197
17.01.2024 01:07
Хорошо, давайте решим эту задачу шаг за шагом.

1) Первым шагом нам нужно понять, как относится отрезок ka к плоскости треугольника abc. Условие говорит нам, что отрезок ka является перпендикуляром к этой плоскости. Это означает, что отрезок ka образует прямой угол с плоскостью треугольника abc.

2) Далее нам нужно понять, какую информацию нам дает периметр треугольника. Периметр треугольника - это сумма длин всех его сторон. В нашем случае, поскольку треугольник abc является правильным треугольником, все его стороны (ab, bc и ca) равны между собой.

3) Мы знаем, что периметр треугольника равен 24 см. Поскольку треугольник abc правильный, это означает, что каждая его сторона равна 24/3 = 8 см.

4) Теперь обратимся к задаче о нахождении расстояния между прямыми bc и ka. Чтобы решить эту задачу, нам нужно знать, какой угол образует отрезок ka с прямой bc.

5) Поскольку отрезок ka перпендикулярен плоскости треугольника abc, он будет перекрещивать прямую bc под прямым углом. Это значит, что у нас получается прямоугольный треугольник, в котором сторона bc является гипотенузой, а отрезок ka - одной из катетов.

6) Теперь мы можем использовать теорему Пифагора, чтобы найти длину отрезка ka. Теорема Пифагора говорит нам, что в прямоугольном треугольнике с гипотенузой длиной c и катетами длинами a и b, сумма квадратов длин катетов равна квадрату длины гипотенузы.

В нашем случае гипотенуза - это сторона bc и ее длина равна 8 см, а катет - это отрезок ka, длину которого мы хотим найти. Таким образом, по теореме Пифагора, мы можем записать следующее уравнение:

ka^2 + 8^2 = bc^2

7) Теперь нам нужно найти длину стороны bc. Поскольку треугольник abc является правильным, все его стороны равны друг другу, поэтому длина стороны bc также равна 8 см.

8) Подставим полученные значения в уравнение, которое мы записали в предыдущем шаге:

ka^2 + 8^2 = 8^2

9) Упростим это уравнение:

ka^2 + 64 = 64

ka^2 = 0

10) Из уравнения видно, что ka = 0. Это означает, что отрезок ka равен нулю, то есть он является точкой. Таким образом, расстояние между прямыми bc и ka также равно нулю.

Итак, мы получаем, что расстояние между прямыми bc и ka равно нулю.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота