В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Fakins
Fakins
08.03.2022 23:02 •  Геометрия

Отрезок меи рк являются диаметра и окружности с центром о. докажите, что : а) угол емр =углу мрк; б) отрезок мк и ре равны

Показать ответ
Ответ:
2017МегаМозг2017
2017МегаМозг2017
13.05.2020 18:39

Пирамида – это многогранная фигура, в основании которой лежит многоугольник, а остальные грани представлены треугольниками с общей вершиной.

Если в основании лежит квадрат, то пирамиду называется четырехугольной, если треугольник – то треугольной. Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:

Рассмотрим пример расчета площади боковой поверхности пирамиды.

Пусть дана пирамида с основанием ABCDE и вершиной F. AB=BC=CD=DE=EA=3 см. Апофема a = 5 см. Найти площадь боковой поверхности пирамиды.
Найдем периметр. Так как все грани основания равны, то периметр пятиугольника будет равен: 
Теперь можно найти боковую площадь пирамиды: Площадь правильной треугольной пирамиды


Правильная треугольная пирамида состоит из основания, в котором лежит правильный треугольник и трех боковых граней, которые равны по площади.
Формула площади боковой поверхности правильной треугольной пирамиды может быть рассчитана разными Можно применить обычную формулу расчета через периметр и апофему, а можно найти площадь одной грани и умножить ее на три. Так как грань пирамиды – это треугольник, то применим формулу площади треугольника. Для нее потребуется апофема и длина основания. Рассмотрим пример расчета площади боковой поверхности правильной треугольной пирамиды.

Дана пирамида с апофемой a = 4 см и гранью основания b = 2 см. Найдите площадь боковой поверхности пирамиды.
Для начала находим площадь одной из боковых граней. В данном случае она будет: 
Подставляем значения в формулу: 
Так как в правильной пирамиде все боковые стороны одинаковы, то площадь боковой поверхности пирамиды будет равна сумме площадей трех граней. Соответственно:

Площадь усеченной пирамиды


Усеченной пирамидой называется многогранник, который образовывается пирамидой и ее сечением, параллельным основанию.
Формула площади боковой поверхности усеченной пирамиды очень проста. Площадь равняется произведению половины суммы периметров оснований на апофему:

Рассмотрим пример расчета площади боковой поверхности усеченной пирамиды.

Дана правильная четырехугольная пирамида. Длины основания равны b = 5 см, c = 3 см. Апофема a = 4 см. Найдите площадь боковой поверхности фигуры.
Для начала найдем периметр оснований. В большем основании он будет равен: 
В меньшем основании: 
Посчитаем площадь: 

Таким образом, применив несложные формулы, мы нашли площадь усеченной пирамиды.

0,0(0 оценок)
Ответ:
4205353
4205353
15.10.2020 19:31
1) Опустим из А высоту АН. АН=АВ*sin 60º=2√3BH=AB*sin30º=2 
HC=BC-BH=6-2=4
 По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7 
Прямоугольные  ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH 
6:2√7=BD:2√3 
BD=12√3:2√7=(6√3):√7 или (6√21):7

2) Найдем АС как в первом решении. 
Площадь треугольника АВС 
S=AC*BD:2 
S=AH*BC:2 
Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения: 
AC*BD:2=AH*BC:2 
(2√7)*BD:2=(2√3)*6:2 
BD=(12√3):(2√7)=(6√3):√7 или (6√21):7
--
АС можно найти и по  т.косинусов,  а площадь  ∆ АВС по формуле S=a*b*sinα:2
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота