Отрезок mn диаметр окружности с центром o. хонда ac делит пополам радиус om и перпендикулярно к нему. найдите углы четырехкгольник manc и градусные меры дуг ma mc cn an нужно много
Заданная сторона АВ, О - точка пересечения медиан, S - площадь треугольника АВС.
Тогда площадь треугольника АОВ равна S/3,
а стороны АО = 18*(2/3) = 12, ВО = 24*(2/3) = 16, АВ = 20.
Очевидно, что АОВ - "египетский" треугольник (то есть прямоугольный треугольник, подобный треугольнику со сторонами 3,4,5, коэффициент подобия равен 4), поэтому его площадь равна 12*16/2 = 96, а площадь АВС S = 96*3 = 288
Что вы там у Гоши68 нашли неправильного? Все он верно сделал, просто написал без пояснений. Другое дело, что можно было бы заметить, что АОВ - прямоугольный треугольник, но и без этого все равно решение верное.
Вообще-то, я хочу пару слов сказать тут тем, кто серьезно готовится к экзаменам. Если вы применяете такую вещь, как формула Герона - вы должны быть готовы на ходу её вывести, если преподаватель потребует. И не только её, а еще и кучу сопутствующих формул вроде малоизвестной теоремы тангенсов ... А это намного сложнее и длинее, чем эта детская задачка.
Пусть в треугольнике ABC проведена средняя линия MN (см. рисунок). AH1, BH2, CH3 - перпендикуляры, опущенные из вершин на прямую, содержащую MN, они равны расстояниям от вершин треугольника до этой прямой. Докажем, что они равны.
Рассмотрим прямоугольные треугольники AMH1, BMH2. В них острые углы AMH1 и BMH2 равны, также равны гипотенузы AM и BM, тогда эти прямоугольные треугольники равны по гипотенузе и острому углу. Значит, катеты, лежащие против равных углов в этих треугольниках, равны, то есть, AH1=BH2.
Аналогично, в прямоугольных треугольниках BNH2 и CNH3 BN=CN, а острые углы BNH2 и CNH3 равны как вертикальные. Тогда треугольники равны по гипотенузе и острому углу. Значит, BH2=CH3.
Таким образом, AH1=BH2=CH3, то есть, расстояния от вершин треугольника до прямой, содержащей MN, равны.
Заданная сторона АВ, О - точка пересечения медиан, S - площадь треугольника АВС.
Тогда площадь треугольника АОВ равна S/3,
а стороны АО = 18*(2/3) = 12, ВО = 24*(2/3) = 16, АВ = 20.
Очевидно, что АОВ - "египетский" треугольник (то есть прямоугольный треугольник, подобный треугольнику со сторонами 3,4,5, коэффициент подобия равен 4), поэтому его площадь равна 12*16/2 = 96, а площадь АВС S = 96*3 = 288
Что вы там у Гоши68 нашли неправильного? Все он верно сделал, просто написал без пояснений. Другое дело, что можно было бы заметить, что АОВ - прямоугольный треугольник, но и без этого все равно решение верное.
Вообще-то, я хочу пару слов сказать тут тем, кто серьезно готовится к экзаменам. Если вы применяете такую вещь, как формула Герона - вы должны быть готовы на ходу её вывести, если преподаватель потребует. И не только её, а еще и кучу сопутствующих формул вроде малоизвестной теоремы тангенсов ... А это намного сложнее и длинее, чем эта детская задачка.
Рассмотрим прямоугольные треугольники AMH1, BMH2. В них острые углы AMH1 и BMH2 равны, также равны гипотенузы AM и BM, тогда эти прямоугольные треугольники равны по гипотенузе и острому углу. Значит, катеты, лежащие против равных углов в этих треугольниках, равны, то есть, AH1=BH2.
Аналогично, в прямоугольных треугольниках BNH2 и CNH3 BN=CN, а острые углы BNH2 и CNH3 равны как вертикальные. Тогда треугольники равны по гипотенузе и острому углу. Значит, BH2=CH3.
Таким образом, AH1=BH2=CH3, то есть, расстояния от вершин треугольника до прямой, содержащей MN, равны.