Отрезок MN расположен вне плоскости α по одну сторону от нее. Расстояние от точек M и N до плоскости равны 13 и 17. Найдите расстояние от середины отрезка MN до плоскости α.
Возможно 2 варианта расположения точек А и Е относительно прямой ВС. 1) А и Е по разные стороны от прямой ВС. Тогда из подобия треугольников следует равенство углов, но они еще имеют общую сторону ВС, значит треугольники равны по стороне и двум прилежащим к ней углам. Тогда треугольник ВЕА - равнобедренний, т.к.ВЕ=ВА -соответственные стороны равных треугольников, в этом случае ВС являться будет биссектрисой (угол СВЕ=углуСВА по условию подобия), но биссектриса равнобедреннего треугольникя является медианой и высотой. Обозначим точку пересечения АЕ и ВС через О и по теореме Пифагора найдём ОС. ОС=sqrt(81-64)=5 Для определения ВО не хватает взодных данных. 2) А и Е лежат по одну сторону от прямой ВС, но тогда и в этом случае получаем два равных треугольника по стороне и двум прилежащим к ней углам. В результате получаем равнобедреннюю тряпецию: у кторой неизвестно большее основание ВС. Боковые стороны АВ=ЕС=9 и вновь недостает данных.
2) А и Е лежат по одну сторону от прямой ВС, но тогда и в этом случае получаем два равных треугольника по стороне и двум прилежащим к ней углам. В результате получаем равнобедреннюю тряпецию: у кторой неизвестно большее основание ВС. Боковые стороны АВ=ЕС=9 и вновь недостает данных.
1) • тр. АВС - прямоугольный, угол С = 90°
• Применим теорему Пифагора:
Квадрат гипотенузы прямоугольного треугольника равен сумме квадртов катетов.
ОТВЕТ: 5
2) • тр. MNK - прямоугольный, угол N = 90°
• По теореме Пифагора:
ОТВЕТ: 3\/17
5) • тр. АВС - равнобедренный, АВ = ВС ,
BD - высота, опущенная на сторону АС
• По свойству равнобедренного треугольника:
Высота, проведённая в равнобедренном треугольнике к основанию, является и медианой, и биссектрисой.
Значит, AD = DC = ( 1/2 ) • AC = ( 1/2 ) • 16 = 8
• Рассмотрим тр. BDC (угол BDC = 90°):
По теореме Пифагора:
ОТВЕТ: 15
6) • тр. RMN - правильный, то есть равносторонний треугольник => RN = NM = RM = 6
• Любая высота, проведёная в равностороннем треугольнике, является и медианой, и биссектрисой:
NK = KM = ( 1/2 ) • NM = ( 1/2 ) • 6 = 3
• Рассмотрим тр. RNK (угол RKN = 90°):
По теореме Пифагора:
ОТВЕТ: 3\/3 .
douwdek0 и 7 других пользователей посчитали ответ полезным!
5
5,0
(3 оценки)
Войди чтобы добавить комментарий
ответ
3,0/5
1
Удачник66
главный мозг
14.3 тыс. ответов
18 млн пользователей, получивших
1) x^2 = 3^2 + 4^2 = 9 + 16 = 25; x = 5
2) x^2 = 13^2 - 4^2 = 169 - 16 = 155; x = V155
Здесь V это корень, просто у меня в телефоне значка корня нет.
Если бы катет был 5, то х = 12.
5) x^2 = 17^2 - (16/2)^2 = 17^2 - 8^2 = 289 - 64 = 225; x = 15
6) x^2 = 6^2 - (6/2)^2 = 6^2 - 3^2 = 36 - 9 = 27; x = V27 = 3*V3
cliy4h и 2 д